論文の概要: Separable PINN: Mitigating the Curse of Dimensionality in
Physics-Informed Neural Networks
- arxiv url: http://arxiv.org/abs/2211.08761v1
- Date: Wed, 16 Nov 2022 08:46:52 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-17 15:57:01.515600
- Title: Separable PINN: Mitigating the Curse of Dimensionality in
Physics-Informed Neural Networks
- Title(参考訳): separable pinn:物理形ニューラルネットワークにおける次元の呪いの緩和
- Authors: Junwoo Cho, Seungtae Nam, Hyunmo Yang, Seok-Bae Yun, Youngjoon Hong,
Eunbyung Park
- Abstract要約: 物理インフォームドニューラルネットワーク(PINN)は、前方および逆問題の両方に新しいデータ駆動型PDEソルバとして登場した。
自動微分(AD)の計算は、PINNのトレーニングにおいて前方モードADを活用することで大幅に削減できることを示す。
我々は、より効率的な計算のために、前進モードADを容易に行える分離可能なPINN(SPINN)と呼ばれるネットワークアーキテクチャを提案する。
- 参考スコア(独自算出の注目度): 3.642046920674311
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Physics-informed neural networks (PINNs) have emerged as new data-driven PDE
solvers for both forward and inverse problems. While promising, the expensive
computational costs to obtain solutions often restrict their broader
applicability. We demonstrate that the computations in automatic
differentiation (AD) can be significantly reduced by leveraging forward-mode AD
when training PINN. However, a naive application of forward-mode AD to
conventional PINNs results in higher computation, losing its practical benefit.
Therefore, we propose a network architecture, called separable PINN (SPINN),
which can facilitate forward-mode AD for more efficient computation. SPINN
operates on a per-axis basis instead of point-wise processing in conventional
PINNs, decreasing the number of network forward passes. Besides, while the
computation and memory costs of standard PINNs grow exponentially along with
the grid resolution, that of our model is remarkably less susceptible,
mitigating the curse of dimensionality. We demonstrate the effectiveness of our
model in various PDE systems by significantly reducing the training run-time
while achieving comparable accuracy. Project page:
\url{https://jwcho5576.github.io/spinn/}
- Abstract(参考訳): 物理インフォームドニューラルネットワーク(PINN)は、前方および逆問題の両方に新しいデータ駆動型PDEソルバとして登場した。
有望だが、解を得るための高価な計算コストは、しばしば広い適用可能性を制限する。
自動微分(AD)の計算は、PINNのトレーニングにおいて前方モードADを活用することで大幅に削減できることを示す。
しかし、従来の PINN に対するフォワードモード AD の単純適用により、計算量が増加し、実用的利益が失われる。
そこで我々は,より効率的な計算を行うために,前方移動ADを容易にするネットワークアーキテクチャであるセパブルPINN(SPINN)を提案する。
SPINNは従来のPINNではポイントワイド処理ではなく軸単位で動作し、ネットワークフォワードパスの数を減らす。
また,標準PINNの計算とメモリコストはグリッドの解像度とともに指数関数的に増大するが,我々のモデルでは,次元の呪いを軽減し,非常に影響を受けにくい。
各種PDEシステムにおいて,学習時間を大幅に削減し,比較精度を向上し,本モデルの有効性を示す。
プロジェクトページ: \url{https://jwcho5576.github.io/spinn/}
関連論文リスト
- PINNsFormer: A Transformer-Based Framework For Physics-Informed Neural Networks [22.39904196850583]
物理インフォームドニューラルネットワーク(PINN)は、偏微分方程式(PDE)の数値解を近似するための有望なディープラーニングフレームワークとして登場した。
我々は,この制限に対処するために,新しいTransformerベースのフレームワークであるPINNsFormerを紹介した。
PINNsFormerは、PINNの障害モードや高次元PDEなど、様々なシナリオにおいて優れた一般化能力と精度を実現する。
論文 参考訳(メタデータ) (2023-07-21T18:06:27Z) - Quantum-Inspired Tensor Neural Networks for Option Pricing [4.3942901219301564]
近年の深層学習の進歩により,高次元の問題を解くことで,次元性の呪い(COD)に対処することが可能になった。
このようなCODに対処するアプローチのサブセットは、高次元PDEの解決に繋がった。
この結果、数学的な金融から産業用途の制御まで、様々な現実世界の問題を解決するための扉が開けた。
論文 参考訳(メタデータ) (2022-12-28T19:39:55Z) - Characteristics-Informed Neural Networks for Forward and Inverse
Hyperbolic Problems [0.0]
双曲型PDEを含む前方および逆問題に対する特徴情報ニューラルネットワーク(CINN)を提案する。
CINNは、通常のMSEデータ適合回帰損失をトレーニングした汎用ディープニューラルネットワークにおいて、PDEの特性を符号化する。
予備的な結果は、CINNがベースラインPINNの精度を改善しつつ、トレーニングの約2倍の速さで非物理的解を回避できることを示している。
論文 参考訳(メタデータ) (2022-12-28T18:38:53Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
スパイキングニューラルネットワーク(SNN)は、エネルギー消費と遅延の観点から、桁違いに改善されている。
我々は、カスタムSNN PythonパッケージsnnTorchのIPU最適化リリースを提示する。
論文 参考訳(メタデータ) (2022-11-19T15:44:08Z) - Enforcing Continuous Physical Symmetries in Deep Learning Network for
Solving Partial Differential Equations [3.6317085868198467]
我々は,PDEのリー対称性によって誘導される不変表面条件をPINNの損失関数に組み込む,新しい対称性を持つ物理情報ニューラルネットワーク(SPINN)を提案する。
SPINNは、トレーニングポイントが少なく、ニューラルネットワークのよりシンプルなアーキテクチャで、PINNよりも優れた性能を示す。
論文 参考訳(メタデータ) (2022-06-19T00:44:22Z) - Auto-PINN: Understanding and Optimizing Physics-Informed Neural
Architecture [77.59766598165551]
物理インフォームドニューラルネットワーク(PINN)は、ディープラーニングのパワーを科学計算にもたらし、科学と工学の実践に革命をもたらしている。
本稿では,ニューラル・アーキテクチャ・サーチ(NAS)手法をPINN設計に適用したAuto-PINNを提案する。
標準PDEベンチマークを用いた包括的事前実験により、PINNの構造と性能の関係を探索することができる。
論文 参考訳(メタデータ) (2022-05-27T03:24:31Z) - Revisiting PINNs: Generative Adversarial Physics-informed Neural
Networks and Point-weighting Method [70.19159220248805]
物理インフォームドニューラルネットワーク(PINN)は、偏微分方程式(PDE)を数値的に解くためのディープラーニングフレームワークを提供する
本稿では,GA機構とPINNの構造を統合したGA-PINNを提案する。
本稿では,Adaboost法の重み付け戦略からヒントを得て,PINNのトレーニング効率を向上させるためのPW法を提案する。
論文 参考訳(メタデータ) (2022-05-18T06:50:44Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
スパイキングニューラルネットワーク(SNN)は、ニューロモルフィックハードウェア上に実装された場合、有望なエネルギー効率のAIモデルである。
非分化性のため、SNNを効率的に訓練することは困難である。
本稿では,ハイパフォーマンスを実現するスパイク表現法(DSR)の差分法を提案する。
論文 参考訳(メタデータ) (2022-05-01T12:44:49Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
我々は,物理インフォームドニューラルネットワークのトレーニングを著しく高速化する新しい手法を開発した。
特に、ガウス滑らか化モデルによりPDE解をパラメータ化し、スタインの恒等性から導かれる2階微分がバックプロパゲーションなしで効率的に計算可能であることを示す。
実験の結果,提案手法は通常のPINN訓練に比べて2桁の精度で競合誤差を実現できることがわかった。
論文 参考訳(メタデータ) (2022-02-18T18:07:54Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。