Mass-Independent Scheme to Test the Quantumness of a Massive Object
- URL: http://arxiv.org/abs/2211.10318v3
- Date: Tue, 16 Jan 2024 17:31:16 GMT
- Title: Mass-Independent Scheme to Test the Quantumness of a Massive Object
- Authors: Debarshi Das, Dipankar Home, Hendrik Ulbricht, Sougato Bose
- Abstract summary: We make crucial modifications to the standard tools for probing the quantum violation of the pivotal classical notion of macrorealism (MR)
Our adaptation enables probing quantum violations for literally any mass, momentum, and frequency.
These should drastically simplify the experimental effort in testing the nonclassicality of massive objects.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The search for empirical schemes to evidence the nonclassicality of large
masses is a central quest of current research. However, practical schemes to
witness the irreducible quantumness of an arbitrarily large mass are still
lacking. To this end, we incorporate crucial modifications to the standard
tools for probing the quantum violation of the pivotal classical notion of
macrorealism (MR): while usual tests use the same measurement arrangement at
successive times, here we use two different measurement arrangements. This
yields a striking result: a mass-independent violation of MR is possible for
harmonic oscillator systems. In fact, our adaptation enables probing quantum
violations for literally any mass, momentum, and frequency. Moreover,
coarse-grained position measurements at an accuracy much worse than the
standard quantum limit, as well as knowing the relevant parameters only to this
precision, without requiring them to be tuned, suffice for our proposal. These
should drastically simplify the experimental effort in testing the
nonclassicality of massive objects ranging from atomic ions to macroscopic
mirrors in LIGO.
Related papers
- Probing the Physical Reality of Projective Measurements [0.0]
We test whether the postulate of a measurement acting as an instantaneous projection onto an eigenstate of the measurement apparatus is compatible with physical reality.<n>We also develop a continuous description of a quantum measurement finding that its repeated-measurement statistics drastically differ from the projective case.
arXiv Detail & Related papers (2025-06-25T17:04:55Z) - Single-bounce quantum gravimeter to measure the free-fall of anti-hydrogen [0.0]
We introduce an innovative concept for a matter-wave gravimeter, where atoms prepared in a Heisenberg-limited quantum state perform a single bounce on a surface followed by a free fall that reveals interferences.<n>This new approach to quantum gravimetry produces a more robust interference pattern compared to previous multi-bounce proposals.
arXiv Detail & Related papers (2025-05-07T19:48:03Z) - Quantum extreme learning machines for photonic entanglement witnessing [30.432877421232842]
Quantum extreme learning machines (QELMs) embody a powerful alternative for witnessing quantum entanglement.
We implement a photonic QELM that leverages the orbital angular momentum of photon pairs as an ancillary degree of freedom.
Unlike conventional methods, our approach does not require fine-tuning, precise calibration, or refined knowledge of the apparatus.
arXiv Detail & Related papers (2025-02-25T16:55:35Z) - Quantum Non-Demolition Measurements and Leggett-Garg inequality [0.0]
Quantum non-demolition measurements define a non-invasive protocol to extract information from a quantum system.
This protocol leads to a quasi-probability distribution for the measured observable outcomes, which can be negative.
We show that there are situations in which Leggett-Garg inequalities are satisfied even if the macrorealism condition is violated.
arXiv Detail & Related papers (2024-07-31T18:04:51Z) - Enhanced Entanglement in the Measurement-Altered Quantum Ising Chain [46.99825956909532]
Local quantum measurements do not simply disentangle degrees of freedom, but may actually strengthen the entanglement in the system.
This paper explores how a finite density of local measurement modifies a given state's entanglement structure.
arXiv Detail & Related papers (2023-10-04T09:51:00Z) - Optimal Local Measurements in Many-body Quantum Metrology [3.245777276920855]
We propose a method dubbed as the "iterative matrix partition" approach to elucidate the underlying structures of optimal local measurements.
We find that exact saturation is possible for all two-qubit pure states, but it is generically restrictive for multi-qubit pure states.
We demonstrate that the qCRB can be universally saturated in an approximate manner through adaptive coherent controls.
arXiv Detail & Related papers (2023-09-30T07:34:31Z) - Entropic uncertainty relations for multiple measurements assigned with
biased weights [5.878738491295183]
We investigate R'enyi entropic uncertainty relations (EURs) in the scenario where measurements on individual copies of a quantum system are selected with nonuniform probabilities.
We numerically verify that our EURs could be advantageous in practical quantum tasks by optimizing the weights assigned to different measurements.
arXiv Detail & Related papers (2023-09-29T03:50:46Z) - Finite Pulse-Time Effects in Long-Baseline Quantum Clock Interferometry [45.73541813564926]
We study the interplay of the quantum center-of-mass $-$ that can become delocalized $-$ together with the internal clock transitions.
We show at the example of a Gaussian laser beam that the proposed quantum-clock interferometers are stable against perturbations from varying optical fields.
arXiv Detail & Related papers (2023-09-25T18:00:03Z) - Anticipative measurements in hybrid quantum-classical computation [68.8204255655161]
We present an approach where the quantum computation is supplemented by a classical result.
Taking advantage of its anticipation also leads to a new type of quantum measurements, which we call anticipative.
In an anticipative quantum measurement the combination of the results from classical and quantum computations happens only in the end.
arXiv Detail & Related papers (2022-09-12T15:47:44Z) - Constraints on probing quantum coherence to infer gravitational
entanglement [0.0]
Gravity mediated entanglement generation so far appears to be the key ingredient for a potential experiment.
With measurements performed only on the atoms, a coherence revival test is proposed for verifying this entanglement generation.
We explore formulations of such a protocol, and specifically find that in the envisioned regime of operation with high thermal excitation, semi-classical models, where there is no concept of entanglement, also give the same experimental signatures.
arXiv Detail & Related papers (2021-06-15T15:29:35Z) - Preparing random states and benchmarking with many-body quantum chaos [48.044162981804526]
We show how to predict and experimentally observe the emergence of random state ensembles naturally under time-independent Hamiltonian dynamics.
The observed random ensembles emerge from projective measurements and are intimately linked to universal correlations built up between subsystems of a larger quantum system.
Our work has implications for understanding randomness in quantum dynamics, and enables applications of this concept in a wider context.
arXiv Detail & Related papers (2021-03-05T08:32:43Z) - Entanglement detection in quantum many-body systems using entropic
uncertainty relations [0.0]
We study experimentally accessible lower bounds on entanglement measures based on entropic uncertainty relations.
We derive an improved entanglement bound for bipartite systems, which requires measuring joint probability distributions in only two different measurement settings per subsystem.
arXiv Detail & Related papers (2021-01-21T20:50:11Z) - Entropic Uncertainty Relations and the Quantum-to-Classical transition [77.34726150561087]
We aim to shed some light on the quantum-to-classical transition as seen through the analysis of uncertainty relations.
We employ entropic uncertainty relations to show that it is only by the inclusion of imprecision in our model of macroscopic measurements that we can prepare a system with two simultaneously well-defined quantities.
arXiv Detail & Related papers (2020-03-04T14:01:17Z) - Quantum probes for universal gravity corrections [62.997667081978825]
We review the concept of minimum length and show how it induces a perturbative term appearing in the Hamiltonian of any quantum system.
We evaluate the Quantum Fisher Information in order to find the ultimate bounds to the precision of any estimation procedure.
Our results show that quantum probes are convenient resources, providing potential enhancement in precision.
arXiv Detail & Related papers (2020-02-13T19:35:07Z) - Probing the Universality of Topological Defect Formation in a Quantum
Annealer: Kibble-Zurek Mechanism and Beyond [46.39654665163597]
We report on experimental tests of topological defect formation via the one-dimensional transverse-field Ising model.
We find that the quantum simulator results can indeed be explained by the KZM for open-system quantum dynamics with phase-flip errors.
This implies that the theoretical predictions of the generalized KZM theory, which assumes isolation from the environment, applies beyond its original scope to an open system.
arXiv Detail & Related papers (2020-01-31T02:55:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.