論文の概要: Self-attention based high order sequence feature reconstruction of
dynamic functional connectivity networks with rs-fMRI for brain disease
classification
- arxiv url: http://arxiv.org/abs/2211.11750v1
- Date: Sat, 19 Nov 2022 02:13:21 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-23 19:33:18.459914
- Title: Self-attention based high order sequence feature reconstruction of
dynamic functional connectivity networks with rs-fMRI for brain disease
classification
- Title(参考訳): 脳疾患分類のためのrs-fMRIを用いた動的機能接続ネットワークの自己注意に基づく高次機能再構成
- Authors: Zhixiang Zhang, Biao Jie, Zhengdong Wang, Jie Zhou, Yang Yang
- Abstract要約: 本稿では,RS-fMRIデータを用いた脳疾患分類のための自己注意型畳み込みリカレントネットワーク(SA-CRN)学習フレームワークを提案する。
- 参考スコア(独自算出の注目度): 16.8590450689469
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Dynamic functional connectivity networks (dFCN) based on rs-fMRI have
demonstrated tremendous potential for brain function analysis and brain disease
classification. Recently, studies have applied deep learning techniques (i.e.,
convolutional neural network, CNN) to dFCN classification, and achieved better
performance than the traditional machine learning methods. Nevertheless,
previous deep learning methods usually perform successive convolutional
operations on the input dFCNs to obtain high-order brain network aggregation
features, extracting them from each sliding window using a series split, which
may neglect non-linear correlations among different regions and the
sequentiality of information. Thus, important high-order sequence information
of dFCNs, which could further improve the classification performance, is
ignored in these studies. Nowadays, inspired by the great success of
Transformer in natural language processing and computer vision, some latest
work has also emerged on the application of Transformer for brain disease
diagnosis based on rs-fMRI data. Although Transformer is capable of capturing
non-linear correlations, it lacks accounting for capturing local spatial
feature patterns and modelling the temporal dimension due to parallel
computing, even equipped with a positional encoding technique. To address these
issues, we propose a self-attention (SA) based convolutional recurrent network
(SA-CRN) learning framework for brain disease classification with rs-fMRI data.
The experimental results on a public dataset (i.e., ADNI) demonstrate the
effectiveness of our proposed SA-CRN method.
- Abstract(参考訳): rs-fMRIに基づく動的機能接続ネットワーク(dFCN)は脳機能解析や脳疾患の分類において大きな可能性を示唆している。
近年,ディープラーニング技術(畳み込みニューラルネットワーク,CNN)をdFCN分類に適用し,従来の機械学習手法よりも優れた性能を実現している。
それにもかかわらず、従来のディープラーニング手法では、入力されたdFCN上で連続的な畳み込み操作を行い、高次脳ネットワーク集約機能を取得し、各スライディングウィンドウから一連のスプリットを用いてそれらを抽出し、異なる領域間の非線形相関や情報のシーケンシャル性を無視する。
そこで本研究では, 分類性能をさらに向上できる重要なdFCNの高次配列情報を無視する。
近年,自然言語処理とコンピュータビジョンにおけるtransformerの偉大な成功に触発され,rs-fmriデータに基づく脳疾患診断へのtransformerの適用に関する最新の研究も行われている。
Transformerは非線形相関を捉えることができるが、局所的な空間的特徴パターンのキャプチャや並列コンピューティングによる時間次元のモデル化は、位置符号化技術も備えていない。
これらの課題に対処するために, RS-fMRIデータを用いた脳疾患分類のための自己注意型畳み込みリカレントネットワーク(SA-CRN)学習フレームワークを提案する。
公開データセット(ADNI)における実験結果は,提案手法の有効性を示すものである。
関連論文リスト
- Classification of Mild Cognitive Impairment Based on Dynamic Functional Connectivity Using Spatio-Temporal Transformer [30.044545011553172]
本稿では,dFC内における空間情報と時間情報の両方の埋め込みを共同で学習する新しい枠組みを提案する。
アルツハイマー病神経画像イニシアチブ(ADNI)から570回のスキャンを行った345名の被験者を対象に,提案手法の優位性を実証した。
論文 参考訳(メタデータ) (2025-01-27T18:20:33Z) - Trainable Adaptive Activation Function Structure (TAAFS) Enhances Neural Network Force Field Performance with Only Dozens of Additional Parameters [0.0]
TAAFS(Treatable Adaptive Function Activation Structure)
非線形なアクティベーションのための数学的定式化を選択する方法を提案する。
本研究では、TAAFSを様々なニューラルネットワークモデルに統合し、精度の向上を観察する。
論文 参考訳(メタデータ) (2024-12-19T09:06:39Z) - Deep-Unrolling Multidimensional Harmonic Retrieval Algorithms on Neuromorphic Hardware [78.17783007774295]
本稿では,高精度かつエネルギー効率の高い単発多次元高調波検索のための変換に基づくニューロモルフィックアルゴリズムの可能性について検討する。
複雑な値の畳み込み層と活性化をスパイクニューラルネットワーク(SNN)に変換する新しい手法を開発した。
変換されたSNNは、元のCNNに比べて性能が低下し、ほぼ5倍の電力効率を実現している。
論文 参考訳(メタデータ) (2024-12-05T09:41:33Z) - Generative forecasting of brain activity enhances Alzheimer's classification and interpretation [16.09844316281377]
静止状態機能型磁気共鳴イメージング(rs-fMRI)は、神経活動を監視する非侵襲的な方法を提供する。
深層学習はこれらの表現を捉えることを約束している。
本研究では,データ拡張の一形態として,rs-fMRIから派生した独立成分ネットワークの時系列予測に着目した。
論文 参考訳(メタデータ) (2024-10-30T23:51:31Z) - TAVRNN: Temporal Attention-enhanced Variational Graph RNN Captures Neural Dynamics and Behavior [2.5282283486446757]
時間注意強調変動グラフリカレントニューラルネットワーク(TAVRNN)について紹介する。
TAVRNNは、神経活動のシーケンシャルスナップショットをモデル化することにより、ネットワーク構造の時間的変化をキャプチャする。
TAVRNNは,分類,クラスタリング,計算効率において,従来のベースラインモデルよりも優れていることを示す。
論文 参考訳(メタデータ) (2024-10-01T13:19:51Z) - Exploring neural oscillations during speech perception via surrogate gradient spiking neural networks [59.38765771221084]
本稿では、ディープラーニングフレームワークと互換性があり、スケーラブルな、生理学的にインスパイアされた音声認識アーキテクチャを提案する。
本研究では, 終末から終末までの勾配降下訓練が, 中枢スパイク神経ネットワークにおける神経振動の出現に繋がることを示す。
本研究は, スパイク周波数適応やリカレント接続などのフィードバック機構が, 認識性能を向上させるために, 神経活動の調節と同期に重要な役割を担っていることを明らかにする。
論文 参考訳(メタデータ) (2024-04-22T09:40:07Z) - Neural oscillators for magnetic hysteresis modeling [0.7444373636055321]
ヒステリシスは科学と工学においてユビキタスな現象である。
この現象をモデル化し定量化するために, 常微分方程式に基づくリカレントニューラルネットワーク (RNN) 手法を開発した。
論文 参考訳(メタデータ) (2023-08-23T08:41:24Z) - Cross-Frequency Coupling Increases Memory Capacity in Oscillatory Neural
Networks [69.42260428921436]
クロス周波数カップリング(CFC)は、ニューロンの集団間での情報統合と関連している。
我々は,海馬および大脳皮質における観測された$theta - gamma$振動回路の計算的役割を予測するCFCのモデルを構築した。
CFCの存在は, 可塑性シナプスによって結合された神経細胞のメモリ容量を増加させることを示す。
論文 参考訳(メタデータ) (2022-04-05T17:13:36Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive
Learning [109.84770951839289]
歴史的文脈からビジュアルダイナミクスを学習するための新しいリカレントネットワークであるPredRNNを紹介する。
本手法は,3つの標準データセット上で高い競争結果が得られることを示す。
論文 参考訳(メタデータ) (2021-03-17T08:28:30Z) - Recurrent Neural Network Learning of Performance and Intrinsic
Population Dynamics from Sparse Neural Data [77.92736596690297]
本稿では,RNNの入出力動作だけでなく,内部ネットワークのダイナミクスも学習できる新しいトレーニング戦略を提案する。
提案手法は、RNNを訓練し、生理学的にインスパイアされた神経モデルの内部ダイナミクスと出力信号を同時に再現する。
注目すべきは、トレーニングアルゴリズムがニューロンの小さなサブセットの活性に依存する場合であっても、内部動力学の再現が成功することである。
論文 参考訳(メタデータ) (2020-05-05T14:16:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。