論文の概要: Learning to Rasterize Differentiably
- arxiv url: http://arxiv.org/abs/2211.13333v2
- Date: Mon, 15 Jul 2024 17:36:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-18 00:30:09.212775
- Title: Learning to Rasterize Differentiably
- Title(参考訳): ラスタライズを学ぶ
- Authors: Chenghao Wu, Hamila Mailee, Zahra Montazeri, Tobias Ritschel,
- Abstract要約: 微分可能化は、画素から下層の三角形へのフローを可能にすることにより、プリミティブ化の標準的な定式化を変える。
これまでの研究は、軟化のいくつかの組み合わせを分析し、比較してきた。
本研究では, ソフト化操作を選択する代わりに, 一般的なソフト化操作の連続空間をパラメータ化する。
- 参考スコア(独自算出の注目度): 10.790255179159459
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Differentiable rasterization changes the standard formulation of primitive rasterization -- by enabling gradient flow from a pixel to its underlying triangles -- using distribution functions in different stages of rendering, creating a "soft" version of the original rasterizer. However, choosing the optimal softening function that ensures the best performance and convergence to a desired goal requires trial and error. Previous work has analyzed and compared several combinations of softening. In this work, we take it a step further and, instead of making a combinatorial choice of softening operations, parameterize the continuous space of common softening operations. We study meta-learning tunable softness functions over a set of inverse rendering tasks (2D and 3D shape, pose and occlusion) so it generalizes to new and unseen differentiable rendering tasks with optimal softness.
- Abstract(参考訳): 異なるラスタライゼーションはプリミティブラスタライゼーションの標準的な定式化を変え、レンダリングの異なる段階における分布関数を使い、元のラスタライザの「ソフト」バージョンを作成する。
しかし、最適な性能と目標への収束を保証する最適な軟化関数を選択するには、試行錯誤が必要である。
これまでの研究は、軟化のいくつかの組み合わせを分析し、比較してきた。
そこで本研究では, ソフト化操作を組み合わせて選択する代わりに, ソフト化操作の連続空間をパラメータ化する手法を提案する。
逆レンダリングタスク(2次元,3次元形状,ポーズ,オクルージョン)の集合上でのメタラーニング可変ソフトネス関数について検討した。
関連論文リスト
- Euler's Elastica Based Cartoon-Smooth-Texture Image Decomposition [4.829677240798159]
グレースケール画像を3つの異なる成分に分解する新しいモデルを提案する。
構造部は強い境界と強い光-暗黒遷移のある領域、滑らかな部分、柔らかい影と影、振動、テクスチャとノイズを表す。
論文 参考訳(メタデータ) (2024-07-03T03:42:33Z) - Rasterized Edge Gradients: Handling Discontinuities Differentiably [25.85191317712521]
近似を描画する不連続点の勾配を計算するための新しい手法を提案する。
本手法は, 慎重に設計した近似戦略により, 従来の複雑な問題をエレガントに単純化する。
我々は,人間の頭部のシーン再構成において,カメラ画像とセグメンテーションマスクのハンドリングを実演する。
論文 参考訳(メタデータ) (2024-05-03T22:42:00Z) - DynaST: Dynamic Sparse Transformer for Exemplar-Guided Image Generation [56.514462874501675]
本稿では,動的スパースアテンションに基づくトランスフォーマーモデルを提案する。
このアプローチの核心は、ある位置がフォーカスすべき最適なトークン数の変化をカバーすることに特化した、新しいダイナミックアテンションユニットです。
3つの応用、ポーズ誘導型人物画像生成、エッジベース顔合成、歪みのない画像スタイル転送の実験により、DynaSTは局所的な詳細において優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2022-07-13T11:12:03Z) - Multiway Non-rigid Point Cloud Registration via Learned Functional Map
Synchronization [105.14877281665011]
我々は、点雲上に定義された学習関数に関する地図を同期させることにより、複数の非剛体形状を登録する新しい方法であるSyNoRiMを提案する。
提案手法は,登録精度において最先端の性能を達成できることを実証する。
論文 参考訳(メタデータ) (2021-11-25T02:37:59Z) - Extracting Triangular 3D Models, Materials, and Lighting From Images [59.33666140713829]
多視点画像観測による材料と照明の協調最適化手法を提案する。
従来のグラフィックスエンジンにデプロイ可能な,空間的に変化する材料と環境を備えたメッシュを活用します。
論文 参考訳(メタデータ) (2021-11-24T13:58:20Z) - Differentiable Rendering with Perturbed Optimizers [85.66675707599782]
2Dイメージプロジェクションから3Dシーンを推論することは、コンピュータビジョンにおける中核的な問題の一つだ。
我々の研究は、よく知られた微分可能な定式化とランダムなスムーズなレンダリングの関連性を強調している。
提案手法を3次元シーン再構成に適用し,その利点を6次元ポーズ推定と3次元メッシュ再構成の課題に適用した。
論文 参考訳(メタデータ) (2021-10-18T08:56:23Z) - Efficient and Differentiable Shadow Computation for Inverse Problems [64.70468076488419]
微分可能幾何計算は画像に基づく逆問題に対する関心が高まっている。
微分可能な可視性とソフトシャドウ計算のための効率的かつ効率的なアプローチを提案する。
定式化は微分可能であるため, テクスチャ, 照明, 剛体ポーズ, 画像からの変形回復などの逆問題を解くために使用できる。
論文 参考訳(メタデータ) (2021-04-01T09:29:05Z) - Efficient Global Optimization of Non-differentiable, Symmetric
Objectives for Multi Camera Placement [0.0]
複数台のカメラを3Dシーンに最適に配置・配向するための新しい反復手法を提案する。
サンプルアプリケーションには、3D再構築の精度の向上、監視対象エリアの最大化、多視点歩行者追跡のカバレッジ向上が含まれる。
論文 参考訳(メタデータ) (2021-03-20T17:01:15Z) - A Flexible Framework for Designing Trainable Priors with Adaptive
Smoothing and Game Encoding [57.1077544780653]
我々は、前方通過を非滑らかな凸最適化問題として解釈できるニューラルネットワーク層の設計とトレーニングのための一般的なフレームワークを紹介する。
グラフのノードに代表されるローカルエージェントによって解決され、正規化関数を介して相互作用する凸ゲームに焦点を当てる。
このアプローチは、訓練可能なエンドツーエンドのディープモデル内で、古典的な画像の事前使用を可能にするため、画像の問題を解決するために魅力的である。
論文 参考訳(メタデータ) (2020-06-26T08:34:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。