Fine-Grained Selective Similarity Integration for Drug-Target
Interaction Prediction
- URL: http://arxiv.org/abs/2212.00543v2
- Date: Tue, 21 Mar 2023 12:52:31 GMT
- Title: Fine-Grained Selective Similarity Integration for Drug-Target
Interaction Prediction
- Authors: Bin Liu, Jin Wang, Kaiwei Sun, Grigorios Tsoumakas
- Abstract summary: We propose a Fine-Grained Selective similarity integration approach, called FGS.
We evaluate FGS on five DTI prediction datasets under various prediction settings.
Case studies on the analysis of similarity weights and on the verification of novel predictions confirm the practical ability of FGS.
- Score: 10.1105462321649
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The discovery of drug-target interactions (DTIs) is a pivotal process in
pharmaceutical development. Computational approaches are a promising and
efficient alternative to tedious and costly wet-lab experiments for predicting
novel DTIs from numerous candidates. Recently, with the availability of
abundant heterogeneous biological information from diverse data sources,
computational methods have been able to leverage multiple drug and target
similarities to boost the performance of DTI prediction. Similarity integration
is an effective and flexible strategy to extract crucial information across
complementary similarity views, providing a compressed input for any
similarity-based DTI prediction model. However, existing similarity integration
methods filter and fuse similarities from a global perspective, neglecting the
utility of similarity views for each drug and target. In this study, we propose
a Fine-Grained Selective similarity integration approach, called FGS, which
employs a local interaction consistency-based weight matrix to capture and
exploit the importance of similarities at a finer granularity in both
similarity selection and combination steps. We evaluate FGS on five DTI
prediction datasets under various prediction settings. Experimental results
show that our method not only outperforms similarity integration competitors
with comparable computational costs, but also achieves better prediction
performance than state-of-the-art DTI prediction approaches by collaborating
with conventional base models. Furthermore, case studies on the analysis of
similarity weights and on the verification of novel predictions confirm the
practical ability of FGS.
Related papers
- Counterfactual Data Augmentation with Contrastive Learning [27.28511396131235]
We introduce a model-agnostic data augmentation method that imputes the counterfactual outcomes for a selected subset of individuals.
We use contrastive learning to learn a representation space and a similarity measure such that in the learned representation space close individuals identified by the learned similarity measure have similar potential outcomes.
This property ensures reliable imputation of counterfactual outcomes for the individuals with close neighbors from the alternative treatment group.
arXiv Detail & Related papers (2023-11-07T00:36:51Z) - Physics Inspired Hybrid Attention for SAR Target Recognition [61.01086031364307]
We propose a physics inspired hybrid attention (PIHA) mechanism and the once-for-all (OFA) evaluation protocol to address the issues.
PIHA leverages the high-level semantics of physical information to activate and guide the feature group aware of local semantics of target.
Our method outperforms other state-of-the-art approaches in 12 test scenarios with same ASC parameters.
arXiv Detail & Related papers (2023-09-27T14:39:41Z) - Meta-Path-based Probabilistic Soft Logic for Drug-Target Interaction
Prediction [36.08294497336554]
Drug-target interaction (DTI) prediction aims at predicting whether a drug will be bounded to a target.
Most of the recently proposed methods use single drug-drug similarity and target-target similarity information for DTI prediction.
We propose a network-based drug-target interaction prediction approach.
arXiv Detail & Related papers (2023-06-25T02:30:38Z) - IPCC-TP: Utilizing Incremental Pearson Correlation Coefficient for Joint
Multi-Agent Trajectory Prediction [73.25645602768158]
IPCC-TP is a novel relevance-aware module based on Incremental Pearson Correlation Coefficient to improve multi-agent interaction modeling.
Our module can be conveniently embedded into existing multi-agent prediction methods to extend original motion distribution decoders.
arXiv Detail & Related papers (2023-03-01T15:16:56Z) - Drug Synergistic Combinations Predictions via Large-Scale Pre-Training
and Graph Structure Learning [82.93806087715507]
Drug combination therapy is a well-established strategy for disease treatment with better effectiveness and less safety degradation.
Deep learning models have emerged as an efficient way to discover synergistic combinations.
Our framework achieves state-of-the-art results in comparison with other deep learning-based methods.
arXiv Detail & Related papers (2023-01-14T15:07:43Z) - Differentiable Agent-based Epidemiology [71.81552021144589]
We introduce GradABM: a scalable, differentiable design for agent-based modeling that is amenable to gradient-based learning with automatic differentiation.
GradABM can quickly simulate million-size populations in few seconds on commodity hardware, integrate with deep neural networks and ingest heterogeneous data sources.
arXiv Detail & Related papers (2022-07-20T07:32:02Z) - Multiple Similarity Drug-Target Interaction Prediction with Random Walks
and Matrix Factorization [16.41618129467975]
We take a multi-layered network perspective, where different layers correspond to different similarity metrics between drugs and targets.
To fully take advantage of topology information captured in multiple views, we develop an optimization framework, called MDMF, for DTI prediction.
The framework learns vector representations of drugs and targets that not only retain higher-order proximity across all hyper-layers, but also approximates the interactions with their inner product.
arXiv Detail & Related papers (2022-01-24T08:02:05Z) - Optimizing Area Under the Curve Measures via Matrix Factorization for
Drug-Target Interaction Prediction [7.385579678137434]
This paper proposes two matrix factorization methods that optimize the area under the precision-recall curve (AUPR) and the receiver operating characteristic curve (AUC)
Experimental results over four updated benchmark datasets show the superiority of the proposed methods in terms of the corresponding evaluation metric they optimize.
arXiv Detail & Related papers (2021-05-01T14:48:32Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
This paper proposes a novel contrastive regularized clinical classification model.
We introduce two unique positive sampling strategies specifically tailored for EHR data.
Our framework yields highly competitive experimental results in predicting the mortality risk on real-world COVID-19 EHR data.
arXiv Detail & Related papers (2021-04-07T06:02:04Z) - Drug-Target Interaction Prediction via an Ensemble of Weighted Nearest
Neighbors with Interaction Recovery [5.8683934849211745]
Drug-target interactions are predicted via structure-based drug similarities and sequence-based target protein similarities.
Most existing similarity-based methods follow the transductive setting.
A large amount of missing interactions in current DTI datasets hinders most DTI prediction methods.
We propose a new method denoted as Weighted k Nearest Neighbor with Interaction Recovery (WkNNIR)
arXiv Detail & Related papers (2020-12-22T19:54:18Z) - Uncertainty-Aware Few-Shot Image Classification [118.72423376789062]
Few-shot image classification learns to recognize new categories from limited labelled data.
We propose Uncertainty-Aware Few-Shot framework for image classification.
arXiv Detail & Related papers (2020-10-09T12:26:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.