論文の概要: Compositional Learning of Dynamical System Models Using Port-Hamiltonian
Neural Networks
- arxiv url: http://arxiv.org/abs/2212.00893v1
- Date: Thu, 1 Dec 2022 22:22:38 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-05 16:23:07.231541
- Title: Compositional Learning of Dynamical System Models Using Port-Hamiltonian
Neural Networks
- Title(参考訳): ポート・ハミルトンニューラルネットワークを用いた動的システムの構成学習
- Authors: Cyrus Neary and Ufuk Topcu
- Abstract要約: データから動的システムの複合モデルを学ぶためのフレームワークを提案する。
ニューラルネットワークサブモデルは、比較的単純なサブシステムによって生成された軌跡データに基づいて訓練される。
提案するフレームワークの新機能を数値例で示す。
- 参考スコア(独自算出の注目度): 32.707730631343416
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many dynamical systems -- from robots interacting with their surroundings to
large-scale multiphysics systems -- involve a number of interacting subsystems.
Toward the objective of learning composite models of such systems from data, we
present i) a framework for compositional neural networks, ii) algorithms to
train these models, iii) a method to compose the learned models, iv)
theoretical results that bound the error of the resulting composite models, and
v) a method to learn the composition itself, when it is not known a prior. The
end result is a modular approach to learning: neural network submodels are
trained on trajectory data generated by relatively simple subsystems, and the
dynamics of more complex composite systems are then predicted without requiring
additional data generated by the composite systems themselves. We achieve this
compositionality by representing the system of interest, as well as each of its
subsystems, as a port-Hamiltonian neural network (PHNN) -- a class of neural
ordinary differential equations that uses the port-Hamiltonian systems
formulation as inductive bias. We compose collections of PHNNs by using the
system's physics-informed interconnection structure, which may be known a
priori, or may itself be learned from data. We demonstrate the novel
capabilities of the proposed framework through numerical examples involving
interacting spring-mass-damper systems. Models of these systems, which include
nonlinear energy dissipation and control inputs, are learned independently.
Accurate compositions are learned using an amount of training data that is
negligible in comparison with that required to train a new model from scratch.
Finally, we observe that the composite PHNNs enjoy properties of
port-Hamiltonian systems, such as cyclo-passivity -- a property that is useful
for control purposes.
- Abstract(参考訳): 環境と対話するロボットから、大規模なマルチフィジカルシステムまで、多くの動的システムは、多くの相互作用するサブシステムを含んでいる。
このようなシステムの複合モデル学習の目的に向けて,本稿で提示する。
一 構成ニューラルネットワークの枠組み
二 これらのモデルを訓練するアルゴリズム
三 学習したモデルを構成する方法
四 結果の合成モデルの誤差を拘束する理論的結果及び
五 前者でないときは、その構成自体を学習する方法
ニューラルネットワークのサブモデルは比較的単純なサブシステムによって生成された軌道データに基づいて訓練され、さらに複雑なコンポジットシステムのダイナミクスは、コンポジットシステム自身で生成された追加データを必要としないように予測される。
この構成性は、各サブシステムと同様に、ポート-ハミルトンニューラルネットワーク(PHNN)として、ポート-ハミルトン系を帰納バイアスとして用いるニューラル常微分方程式のクラスとして表現することで達成される。
phnnのコレクションは、前もって知られていたり、データから学ばれたりできる、物理に変形した相互接続構造を用いて構成する。
本稿では,spring-mass-damperシステムの相互作用に関する数値例を通して,提案フレームワークの新たな機能を示す。
非線形エネルギー散逸と制御入力を含むこれらのシステムのモデルは独立に学習される。
正確な構成は、新しいモデルをスクラッチからトレーニングするために必要なものと比べて無視できる大量のトレーニングデータを用いて学習される。
最後に、複合PHNNはシクロパッシビティのようなポート-ハミルトン系の特性を享受し、制御目的に有用な特性を享受する。
関連論文リスト
- Learning Subsystem Dynamics in Nonlinear Systems via Port-Hamiltonian Neural Networks [0.0]
ポート・ハミルトンニューラルネットワーク(pHNN)は、物理法則とディープラーニング技術を統合する強力なモデリングツールとして登場している。
本研究では,入力出力測定のみに基づいて,pHNNを用いてサブシステムを特定する手法を提案する。
論文 参考訳(メタデータ) (2024-11-08T17:41:51Z) - Learning Governing Equations of Unobserved States in Dynamical Systems [0.0]
我々は、部分的に観測された力学系の制御方程式を学習するために、ハイブリッドニューラルネットワークODE構造を用いる。
本手法は, 観測されていない状態の真の支配方程式の学習に有効であることを示す。
論文 参考訳(メタデータ) (2024-04-29T10:28:14Z) - Demolition and Reinforcement of Memories in Spin-Glass-like Neural
Networks [0.0]
この論文の目的は、連想記憶モデルと生成モデルの両方において、アンラーニングの有効性を理解することである。
構造化データの選択により、連想記憶モデルは、相当量のアトラクションを持つニューラルダイナミクスのアトラクションとしての概念を検索することができる。
Boltzmann Machinesの新しい正規化手法が提案され、データセットから隠れ確率分布を学習する以前に開発された手法より優れていることが証明された。
論文 参考訳(メタデータ) (2024-03-04T23:12:42Z) - Learning Modular Simulations for Homogeneous Systems [23.355189771765644]
等質多体力学系をモデル化するためのモジュラーシミュレーションフレームワークを提案する。
任意の数の加群を組み合わせることで、様々な結合トポロジーの系をシミュレートすることができる。
我々のモデルは、スクラッチからトレーニングされたモデルと比較して、データ要件やトレーニングの労力が低い新しいシステム構成に移行可能であることを示しています。
論文 参考訳(メタデータ) (2022-10-28T17:48:01Z) - Decomposed Linear Dynamical Systems (dLDS) for learning the latent
components of neural dynamics [6.829711787905569]
本稿では,時系列データの非定常および非線形の複雑なダイナミクスを表現した新しい分解力学系モデルを提案する。
我々のモデルは辞書学習によって訓練され、最近の結果を利用してスパースベクトルを時間とともに追跡する。
連続時間と離散時間の両方の指導例において、我々のモデルは元のシステムによく近似できることを示した。
論文 参考訳(メタデータ) (2022-06-07T02:25:38Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
本稿では,その潜在表現内でのシステム入力の変動をキャプチャする構造付き潜在ODEモデルを提案する。
静的変数仕様に基づいて,本モデルではシステムへの入力毎の変動要因を学習し,潜在空間におけるシステム入力の影響を分離する。
論文 参考訳(メタデータ) (2022-02-25T20:00:56Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
トレーニングセットとその構造が長期予測の品質に与える影響を考察する。
トレーニングセットのインフォームドデザインは,システムの不変性と基盤となるアトラクションの構造に基づいて,結果のモデルを大幅に改善することを示す。
論文 参考訳(メタデータ) (2021-12-15T20:09:20Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
データ駆動モデリングは、真のシステムの観測からシステムの力学の近似を学ぼうとする代替パラダイムである。
本稿では,ニューラルネットワークを用いた動的システムのモデル構築方法について検討する。
基礎的な概要に加えて、関連する文献を概説し、このモデリングパラダイムが克服すべき数値シミュレーションから最も重要な課題を概説する。
論文 参考訳(メタデータ) (2021-11-02T10:51:42Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
現代の力学系はますます非線形で複雑なものになりつつある。
予測と制御のためのコンパクトで包括的な表現でこれらのシステムをモデル化するフレームワークが必要である。
本手法は,教師付き学習手法を用いてこれらの基礎関数を学習する。
論文 参考訳(メタデータ) (2021-09-06T04:39:06Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
利用可能なデータがノイズの多い部分測定の場合,カオスダイナミクスシステムのデータ支援予測の問題を検討する。
動的システムの状態の部分的測定を用いることで、不完全な知識ベースモデルによる予測を改善するために機械学習モデルを訓練できることを示す。
論文 参考訳(メタデータ) (2021-02-15T19:56:48Z) - Model-Based Deep Learning [155.063817656602]
信号処理、通信、制御は伝統的に古典的な統計モデリング技術に依存している。
ディープニューラルネットワーク(DNN)は、データから操作を学ぶ汎用アーキテクチャを使用し、優れたパフォーマンスを示す。
私たちは、原理数学モデルとデータ駆動システムを組み合わせて両方のアプローチの利点を享受するハイブリッド技術に興味があります。
論文 参考訳(メタデータ) (2020-12-15T16:29:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。