論文の概要: Proximal methods for point source localisation
- arxiv url: http://arxiv.org/abs/2212.02991v3
- Date: Mon, 10 Jul 2023 08:21:08 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-13 20:06:31.095349
- Title: Proximal methods for point source localisation
- Title(参考訳): 点源ローカライズのための近法
- Authors: Tuomo Valkonen
- Abstract要約: 非ヒルベルト空間における最適化法はヒルベルト空間よりもはるかに発展しない。
点源ローカライズのためのほとんどの数値アルゴリズムは、Frank-Wolfe条件勾配法に基づいている。
我々は,測度空間への近型手法の拡張を開発する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Point source localisation is generally modelled as a Lasso-type problem on
measures. However, optimisation methods in non-Hilbert spaces, such as the
space of Radon measures, are much less developed than in Hilbert spaces. Most
numerical algorithms for point source localisation are based on the Frank-Wolfe
conditional gradient method, for which ad hoc convergence theory is developed.
We develop extensions of proximal-type methods to spaces of measures. This
includes forward-backward splitting, its inertial version, and primal-dual
proximal splitting. Their convergence proofs follow standard patterns. We
demonstrate their numerical efficacy.
- Abstract(参考訳): 点源ローカライゼーションは一般に測度上のラッソ型問題としてモデル化される。
しかしながら、ラドン測度の空間のような非ヒルベルト空間における最適化方法は、ヒルベルト空間よりもはるかに少ない。
点源ローカライズのためのほとんどの数値アルゴリズムは、アドホック収束理論を開発するFrank-Wolfe条件勾配法に基づいている。
我々は,測度空間への近型手法の拡張を開発する。
これには前方後方分割、慣性バージョン、原始二重近位分割が含まれる。
それらの収束証明は標準パターンに従う。
数値的有効性を示す。
関連論文リスト
- A Historical Trajectory Assisted Optimization Method for Zeroth-Order Federated Learning [24.111048817721592]
フェデレートラーニングは分散勾配降下技術に大きく依存している。
勾配情報が得られない状況では、勾配をゼロ次情報から推定する必要がある。
勾配推定法を改善するための非等方的サンプリング法を提案する。
論文 参考訳(メタデータ) (2024-09-24T10:36:40Z) - A Unified Theory of Stochastic Proximal Point Methods without Smoothness [52.30944052987393]
近点法はその数値的安定性と不完全なチューニングに対する頑健性からかなりの関心を集めている。
本稿では,近位点法(SPPM)の幅広いバリエーションの包括的解析について述べる。
論文 参考訳(メタデータ) (2024-05-24T21:09:19Z) - Decentralized Riemannian Conjugate Gradient Method on the Stiefel
Manifold [59.73080197971106]
本稿では,最急降下法よりも高速に収束する一階共役最適化法を提案する。
これはスティーフェル多様体上の大域収束を達成することを目的としている。
論文 参考訳(メタデータ) (2023-08-21T08:02:16Z) - Variance reduction techniques for stochastic proximal point algorithms [5.374800961359305]
そこで本研究では,近点アルゴリズムにおける分散低減手法の統一化研究を提案する。
我々は,SVRG,SAGA,およびそれらの変種の近位バージョンを提供するために特定可能な,汎用的近位アルゴリズムを提案する。
本実験は, 勾配法よりも近似分散還元法の利点を実証する。
論文 参考訳(メタデータ) (2023-08-18T05:11:50Z) - Efficient Informed Proposals for Discrete Distributions via Newton's
Series Approximation [13.349005662077403]
我々は,強い要求を伴わずに任意の離散分布に対する勾配的提案を開発する。
提案手法は,ニュートン級数展開による離散確率比を効率よく近似する。
提案手法は,メトロポリス・ハスティングス・ステップの有無にかかわらず,コンバージェンスレートが保証されていることを実証する。
論文 参考訳(メタデータ) (2023-02-27T16:28:23Z) - The rate of convergence of Bregman proximal methods: Local geometry vs.
regularity vs. sharpness [33.48987613928269]
与えられた手法の収束率は、関連するルジャンドル指数に大きく依存することを示す。
特に、境界解はゼロとノンゼロのルジャンドル指数を持つ手法の分離を示すことを示す。
論文 参考訳(メタデータ) (2022-11-15T10:49:04Z) - DRSOM: A Dimension Reduced Second-Order Method [13.778619250890406]
信頼的な枠組みの下では,2次法の収束を保ちながら,数方向の情報のみを用いる。
理論的には,この手法は局所収束率と大域収束率が$O(epsilon-3/2)$であり,第1次条件と第2次条件を満たすことを示す。
論文 参考訳(メタデータ) (2022-07-30T13:05:01Z) - Improving Metric Dimensionality Reduction with Distributed Topology [68.8204255655161]
DIPOLEは、局所的、計量的項と大域的、位相的項の両方で損失関数を最小化し、初期埋め込みを補正する次元推論後処理ステップである。
DIPOLEは、UMAP、t-SNE、Isomapといった一般的な手法よりも多くの一般的なデータセットで優れています。
論文 参考訳(メタデータ) (2021-06-14T17:19:44Z) - Optimal oracle inequalities for solving projected fixed-point equations [53.31620399640334]
ヒルベルト空間の既知の低次元部分空間を探索することにより、確率観測の集合を用いて近似解を計算する手法を検討する。
本稿では,線形関数近似を用いた政策評価問題に対する時間差分学習手法の誤差を正確に評価する方法について述べる。
論文 参考訳(メタデータ) (2020-12-09T20:19:32Z) - Random extrapolation for primal-dual coordinate descent [61.55967255151027]
本稿では,データ行列の疎度と目的関数の好適な構造に適応する,ランダムに外挿した原始-双対座標降下法を提案する。
一般凸凹の場合, 主対差と目的値に対するシーケンスのほぼ確実に収束と最適サブ線形収束率を示す。
論文 参考訳(メタデータ) (2020-07-13T17:39:35Z) - IDEAL: Inexact DEcentralized Accelerated Augmented Lagrangian Method [64.15649345392822]
本稿では,局所関数が滑らかで凸な分散最適化環境下での原始的手法設計のためのフレームワークを提案する。
提案手法は,加速ラグランジアン法により誘導されるサブプロブレム列を概ね解いたものである。
加速度勾配降下と組み合わせることで,収束速度が最適で,最近導出された下界と一致した新しい原始アルゴリズムが得られる。
論文 参考訳(メタデータ) (2020-06-11T18:49:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。