論文の概要: Quantum Computing for Fusion Energy Science Applications
- arxiv url: http://arxiv.org/abs/2212.05054v1
- Date: Fri, 9 Dec 2022 18:56:46 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-09 19:10:17.953953
- Title: Quantum Computing for Fusion Energy Science Applications
- Title(参考訳): 核融合エネルギー科学応用のための量子コンピューティング
- Authors: I. Joseph, Y. Shi, M. D. Porter, A. R. Castelli, V. I. Geyko, F. R.
Graziani, S. B. Libby, J. L. DuBois
- Abstract要約: 量子コンピュータを用いて線形力学と非線形力学の両方をより詳細にシミュレートする話題について検討する。
我々は、クープマン進化作用素とペロン・フロベニウス進化作用素との接続を明示的に導出することにより、線形系に埋め込まれた非線形系に対する以前の結果を拡張した。
本稿では,非線形プラズマ力学において重要な量子マップのシミュレーションと波動-波動相互作用のシミュレーションを通して,波動-粒子相互作用の玩具モデルのシミュレーションについて議論する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This is a review of recent research exploring and extending present-day
quantum computing capabilities for fusion energy science applications. We begin
with a brief tutorial on both ideal and open quantum dynamics, universal
quantum computation, and quantum algorithms. Then, we explore the topic of
using quantum computers to simulate both linear and nonlinear dynamics in
greater detail. Because quantum computers can only efficiently perform linear
operations on the quantum state, it is challenging to perform nonlinear
operations that are generically required to describe the nonlinear differential
equations of interest. In this work, we extend previous results on embedding
nonlinear systems within linear systems by explicitly deriving the connection
between the Koopman evolution operator, the Perron-Frobenius evolution
operator, and the Koopman-von Neumann evolution (KvN) operator. We also
explicitly derive the connection between the Koopman and Carleman approaches to
embedding. Extension of the KvN framework to the complex-analytic setting
relevant to Carleman embedding, and the proof that different choices of complex
analytic reproducing kernel Hilbert spaces depend on the choice of Hilbert
space metric are covered in the appendices. Finally, we conclude with a review
of recent quantum hardware implementations of algorithms on present-day quantum
hardware platforms that may one day be accelerated through Hamiltonian
simulation. We discuss the simulation of toy models of wave-particle
interactions through the simulation of quantum maps and of wave-wave
interactions important in nonlinear plasma dynamics.
- Abstract(参考訳): 本論文は、核融合エネルギー科学応用のための現在の量子コンピューティング能力を探求し拡張する最近の研究のレビューである。
理想的な量子力学とオープンな量子力学、普遍的な量子計算、量子アルゴリズムに関する簡単なチュートリアルから始める。
そこで, 量子コンピュータを用いて線形力学と非線形力学の両方をより詳細にシミュレートする。
量子コンピュータは量子状態上で線形演算を効率的に行うことができるため、非線形微分方程式を記述するのに汎用的に必要とされる非線形演算を行うことは困難である。
本研究では, コープマン進化作用素, ペロン・フロベニウス進化作用素, クープマン・ヴォン・ノイマン進化作用素(KvN)との接続を明示的に導出することにより, 線形系に非線形系を埋め込む際の従来の結果を拡張する。
また、koopman と carleman の埋め込みアプローチとの関係を明示的に導出します。
KvN フレームワークのカールマン埋め込みに関連する複素解析的セッティングへの拡張と、複素解析的再生核 Hilbert 空間の異なる選択がヒルベルト空間計量の選択に依存するという証明は付録でカバーされている。
最後に、現在の量子ハードウェアプラットフォームにおけるアルゴリズムの最近の量子ハードウェア実装のレビューを行い、ハミルトンシミュレーションによっていつか加速されるかもしれないと結論付けた。
非線形プラズマ力学において重要な量子マップと波動-波動相互作用のシミュレーションによる波動-粒子相互作用の玩具モデルのシミュレーションについて議論する。
関連論文リスト
- Simulating Schwinger model dynamics with quasi-one-dimensional qubit arrays [0.0]
我々は、合成量子スピン格子上でシュウィンガーモデルダイナミクスを実行するための戦略を開発する。
我々は、大域磁場パターンが格子シュヴィンガー・ハミルトニアンと同等の界面のコヒーレント量子力学を駆動できることを示した。
この研究は、短期量子シミュレーターが素粒子物理学に即時関係する問題に対処する道を開く。
論文 参考訳(メタデータ) (2024-09-22T17:58:25Z) - Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
ランダム量子スピン系の進化をモデル化するためにFNOを用いる。
量子波動関数全体の2n$の代わりに、コンパクトなハミルトン観測可能集合にFNOを適用する。
論文 参考訳(メタデータ) (2024-09-05T07:18:09Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Quantum Computing for nonlinear differential equations and turbulence [6.974741712647655]
非線形方程式と量子ハードウェアのための量子アルゴリズムの開発の進展について論じる。
非線形方程式の量子アルゴリズムと量子ハードウェアの概念のペアリングを提案する。
論文 参考訳(メタデータ) (2024-06-07T10:52:08Z) - Potential quantum advantage for simulation of fluid dynamics [1.4046104514367475]
我々は,量子コンピューティングを用いて乱流を制御したナビエ・ストークス方程式をシミュレートするために,潜在的な量子指数的高速化を実現することができることを示す。
この研究は、非線形多スケール輸送現象をシミュレートする指数的な量子優位性が存在することを示唆している。
論文 参考訳(メタデータ) (2023-03-29T09:14:55Z) - Trapped-Ion Quantum Simulation of Collective Neutrino Oscillations [55.41644538483948]
量子計算を用いて,Nニュートリノ系のコヒーレントな集団振動を2成分近似でシミュレートする手法について検討した。
第2次トロッタースズキ公式を用いたゲート複雑性は,量子信号処理などの他の分解方法よりも,システムサイズに優れることがわかった。
論文 参考訳(メタデータ) (2022-07-07T09:39:40Z) - Commutation simulator for open quantum dynamics [0.0]
時間依存密度作用素 $hatrho(t)$ の直接的性質を調べる革新的な方法を提案する。
可換関係の期待値と$hatrho(t)$の変化率を直接計算できる。
単一量子ビットの場合において、単純だが重要な例が示され、多くの量子ビットを用いた実用的な量子シミュレーション法の拡張について論じる。
論文 参考訳(メタデータ) (2022-06-01T16:03:43Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
量子力学シミュレーションのための量子アルゴリズムは、伝統的に時間進化作用素のトロッター近似の実装に基づいている。
変分量子アルゴリズムは欠かせない代替手段となり、現在のハードウェア上での小規模なシミュレーションを可能にしている。
量子ゲートコストが明らかに削減されているにもかかわらず、現在の実装における変分法は量子的優位性をもたらすことはありそうにない。
論文 参考訳(メタデータ) (2021-08-09T18:00:05Z) - Designing Kerr Interactions for Quantum Information Processing via
Counterrotating Terms of Asymmetric Josephson-Junction Loops [68.8204255655161]
静的空洞非線形性は通常、ボゾン量子誤り訂正符号の性能を制限する。
非線形性を摂動として扱うことで、シュリーファー・ヴォルフ変換を用いて実効ハミルトニアンを導出する。
その結果、立方体相互作用は、線形演算と非線形演算の両方の有効率を高めることができることがわかった。
論文 参考訳(メタデータ) (2021-07-14T15:11:05Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
53量子ビット量子プロセッサにおける量子スクランブルのダイナミクスを実験的に検討する。
演算子の拡散は効率的な古典的モデルによって捉えられるが、演算子の絡み合いは指数関数的にスケールされた計算資源を必要とする。
論文 参考訳(メタデータ) (2021-01-21T22:18:49Z) - Superconducting quantum many-body circuits for quantum simulation and
computing [0.0]
超伝導回路が様々な相互作用の工学にどのように貢献するかを論じる。
特に非線形要素を介する強い光子-光子相互作用に着目する。
量子コンピューティングプラットフォームにおける量子ゲートの連結時に開放される超伝導量子シミュレーションの今後の展望について論じる。
論文 参考訳(メタデータ) (2020-03-18T10:33:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。