論文の概要: Quantum Computing for nonlinear differential equations and turbulence
- arxiv url: http://arxiv.org/abs/2406.04826v1
- Date: Fri, 7 Jun 2024 10:52:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-10 14:30:43.512652
- Title: Quantum Computing for nonlinear differential equations and turbulence
- Title(参考訳): 非線形微分方程式と乱流の量子計算
- Authors: Felix Tennie, Sylvain Laizet, Seth Lloyd, Luca Magri,
- Abstract要約: 非線形方程式と量子ハードウェアのための量子アルゴリズムの開発の進展について論じる。
非線形方程式の量子アルゴリズムと量子ハードウェアの概念のペアリングを提案する。
- 参考スコア(独自算出の注目度): 6.974741712647655
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A large spectrum of problems in classical physics and engineering, such as turbulence, is governed by nonlinear differential equations, which typically require high-performance computing to be solved. Over the past decade, however, the growth of classical computing power has slowed down because the miniaturisation of chips has been approaching the atomic scale. This is marking an end to Moore's law, which calls for a new computing paradigm: Quantum computing is a prime candidate. In this paper, we offer a perspective on the current challenges that need to be overcome in order to use quantum computing for the simulation of nonlinear dynamics. We review and discuss progress in the development of both quantum algorithms for nonlinear equations and quantum hardware. We propose pairings between quantum algorithms for nonlinear equations and quantum hardware concepts. These avenues open new opportunities for the simulation of nonlinear systems and turbulence.
- Abstract(参考訳): 乱流のような古典物理学や工学における問題スペクトルは非線形微分方程式によって制御され、通常は高性能な計算を解く必要がある。
しかし過去10年間で、チップの小型化が原子スケールに近づいているため、古典的な計算能力の成長は鈍化している。
これはムーアの法則に終止符を打つものであり、新しい計算パラダイムを提唱している: 量子コンピューティングは主要な候補である。
本稿では,非線形力学のシミュレーションに量子コンピューティングを利用するために克服すべき課題について考察する。
非線形方程式と量子ハードウェアのための量子アルゴリズムの開発の進展をレビューし、議論する。
非線形方程式の量子アルゴリズムと量子ハードウェアの概念のペアリングを提案する。
これらの経路は非線形系と乱流のシミュレーションの新しい機会を開く。
関連論文リスト
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Quantum and classical algorithms for nonlinear unitary dynamics [0.5729426778193399]
我々は$fracd|urangledtという形の非線形微分方程式に対する量子アルゴリズムを提案する。
また,Euler法に基づく古典的アルゴリズムを導入し,制限された場合の量子アルゴリズムへのコンパラブルなスケーリングを実現する。
論文 参考訳(メタデータ) (2024-07-10T14:08:58Z) - Solving nonlinear differential equations on Quantum Computers: A
Fokker-Planck approach [5.0401589279256065]
本稿では,非線形力学系を線形系に変換することを提案する。
この方法の鍵となるのはフォッカー・プランク方程式であり、これは非正規偏微分方程式である。
提案した量子解法と非線形系の統合をエミュレートし、古典方程式のベンチマーク解と比較する。
論文 参考訳(メタデータ) (2024-01-24T14:48:55Z) - Quantum Computing for Fusion Energy Science Applications [0.0]
量子コンピュータを用いて線形力学と非線形力学の両方をより詳細にシミュレートする話題について検討する。
我々は、クープマン進化作用素とペロン・フロベニウス進化作用素との接続を明示的に導出することにより、線形系に埋め込まれた非線形系に対する以前の結果を拡張した。
本稿では,非線形プラズマ力学において重要な量子マップのシミュレーションと波動-波動相互作用のシミュレーションを通して,波動-粒子相互作用の玩具モデルのシミュレーションについて議論する。
論文 参考訳(メタデータ) (2022-12-09T18:56:46Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
量子力学シミュレーションのための量子アルゴリズムは、伝統的に時間進化作用素のトロッター近似の実装に基づいている。
変分量子アルゴリズムは欠かせない代替手段となり、現在のハードウェア上での小規模なシミュレーションを可能にしている。
量子ゲートコストが明らかに削減されているにもかかわらず、現在の実装における変分法は量子的優位性をもたらすことはありそうにない。
論文 参考訳(メタデータ) (2021-08-09T18:00:05Z) - An Algebraic Quantum Circuit Compression Algorithm for Hamiltonian
Simulation [55.41644538483948]
現在の世代のノイズの多い中間スケール量子コンピュータ(NISQ)は、チップサイズとエラー率に大きく制限されている。
我々は、自由フェルミオンとして知られる特定のスピンハミルトニアンをシミュレーションするために、量子回路を効率よく圧縮するために局所化回路変換を導出する。
提案した数値回路圧縮アルゴリズムは、後方安定に動作し、$mathcalO(103)$スピンを超える回路合成を可能にするスピンの数で3次スケールする。
論文 参考訳(メタデータ) (2021-08-06T19:38:03Z) - Adiabatic Quantum Graph Matching with Permutation Matrix Constraints [75.88678895180189]
3次元形状と画像のマッチング問題は、NPハードな置換行列制約を持つ二次代入問題(QAP)としてしばしば定式化される。
本稿では,量子ハードウェア上での効率的な実行に適した制約のない問題として,いくつかのQAPの再構成を提案する。
提案アルゴリズムは、将来の量子コンピューティングアーキテクチャにおいて、より高次元にスケールする可能性がある。
論文 参考訳(メタデータ) (2021-07-08T17:59:55Z) - Variational quantum algorithm based on the minimum potential energy for
solving the Poisson equation [7.620967781722716]
ポアソン方程式を解くための変分量子アルゴリズムを提案する。
提案手法はポアソン方程式の全ポテンシャルエネルギーをハミルトニアンとして定義する。
項の数は問題の大きさとは無関係であるため、この方法は比較的少ない量子測定を必要とする。
論文 参考訳(メタデータ) (2021-06-17T09:01:53Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
時間に依存しない深さの量子回路を生成するための構成的アルゴリズムを提案する。
一次元横フィールドXYモデルにおけるアンダーソン局在化を含む、モデルの特殊クラスに対するアルゴリズムを強調する。
幅広いスピンモデルとフェルミオンモデルに対して正確な回路を提供するのに加えて、我々のアルゴリズムは最適なハミルトニアンシミュレーションに関する幅広い解析的および数値的な洞察を提供する。
論文 参考訳(メタデータ) (2021-04-01T19:06:00Z) - An Application of Quantum Annealing Computing to Seismic Inversion [55.41644538483948]
小型地震インバージョン問題を解決するために,D波量子アニールに量子アルゴリズムを適用した。
量子コンピュータによって達成される精度は、少なくとも古典的コンピュータと同程度である。
論文 参考訳(メタデータ) (2020-05-06T14:18:44Z) - Quantum Solver of Contracted Eigenvalue Equations for Scalable Molecular
Simulations on Quantum Computing Devices [0.0]
エネルギーの古典的方法の量子アナログである縮約固有値方程式の量子解法を導入する。
量子シミュレータと2つのIBM量子処理ユニットで計算を行う。
論文 参考訳(メタデータ) (2020-04-23T18:35:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。