Know Unreported Roadway Incidents in Real-time: Early Traffic Anomaly Detection
- URL: http://arxiv.org/abs/2412.10892v2
- Date: Wed, 23 Apr 2025 18:02:35 GMT
- Title: Know Unreported Roadway Incidents in Real-time: Early Traffic Anomaly Detection
- Authors: Haocheng Duan, Hao Wu, Sean Qian,
- Abstract summary: A traffic anomaly refers to a generic incident on the road that influences traffic flow and calls for urgent traffic management measures.<n>This research aims to know traffic anomalies as early as possible.
- Score: 3.7380424073821046
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This research aims to know traffic anomalies as early as possible. A traffic anomaly refers to a generic incident on the road that influences traffic flow and calls for urgent traffic management measures. `Knowing'' the occurrence of a traffic anomaly is twofold: the ability to detect this anomaly before it is reported anywhere, or it may be such that an anomaly can be predicted before it actually occurs on the road (e.g., non-recurrent traffic breakdown). In either way, the objective is to inform traffic operators of unreported incidents in real time and as early as possible. The key is to stay ahead of the curve. Time is of the essence. Conventional automatic incident detection (AID) methods often struggle with early detection due to their limited consideration of spatial effects and early-stage characteristics. Therefore, we propose a deep learning framework utilizing prior domain knowledge and model-designing strategies. This allows the model to detect a broader range of anomalies, not only incidents that significantly influence traffic flow but also early characteristics of incidents along with historically unreported anomalies. We specially design the model to target the early-stage detection/prediction of an incident. Additionally, unlike most conventional AID studies, our method is highly scalable and generalizable, as it is fully automated with no manual selection of historical reports required, relies solely on widely available low-cost data, and requires no additional detectors. The experimental results across numerous road segments on different maps demonstrate that our model leads to more effective and early anomaly detection.
Related papers
- Advance Real-time Detection of Traffic Incidents in Highways using Vehicle Trajectory Data [3.061662434597097]
This study uses vehicle trajectory data and traffic incident data on I-10, one of the most crash-prone highways in Louisiana.
Various machine learning algorithms are used to detect a trajectory that is likely to face an incident in the downstream road section.
Results suggest that the Random Forest model achieves the best performance for predicting an incident with reasonable recall value and discrimination capability.
arXiv Detail & Related papers (2024-08-15T00:51:48Z) - XTraffic: A Dataset Where Traffic Meets Incidents with Explainability and More [38.092415845567345]
Research has been conducted on two highly correlated tracks: traffic and incidents.
XTraffic dataset includes traffic, i.e., time-series indexes on traffic flow, lane occupancy, and average vehicle speed.
Each node includes detailed physical policy-level meta-attributes of lanes.
arXiv Detail & Related papers (2024-07-16T08:16:01Z) - Pattern-Based Time-Series Risk Scoring for Anomaly Detection and Alert Filtering -- A Predictive Maintenance Case Study [3.508168174653255]
We propose a fast and efficient approach to anomaly detection and alert filtering based on sequential pattern similarities.
We show how this approach can be leveraged for a variety of purposes involving anomaly detection on a large scale real-world industrial system.
arXiv Detail & Related papers (2024-05-24T20:27:45Z) - Unraveling the "Anomaly" in Time Series Anomaly Detection: A
Self-supervised Tri-domain Solution [89.16750999704969]
Anomaly labels hinder traditional supervised models in time series anomaly detection.
Various SOTA deep learning techniques, such as self-supervised learning, have been introduced to tackle this issue.
We propose a novel self-supervised learning based Tri-domain Anomaly Detector (TriAD)
arXiv Detail & Related papers (2023-11-19T05:37:18Z) - Synthetic outlier generation for anomaly detection in autonomous driving [1.0989593035411862]
Anomaly detection is crucial to identify instances that significantly deviate from established patterns or the majority of data.
In this study, we explore different strategies for training an image semantic segmentation model with an anomaly detection module.
By introducing modifications to the training stage of the state-of-the-art DenseHybrid model, we achieve significant performance improvements in anomaly detection.
arXiv Detail & Related papers (2023-08-04T07:55:32Z) - Implicit Occupancy Flow Fields for Perception and Prediction in
Self-Driving [68.95178518732965]
A self-driving vehicle (SDV) must be able to perceive its surroundings and predict the future behavior of other traffic participants.
Existing works either perform object detection followed by trajectory of the detected objects, or predict dense occupancy and flow grids for the whole scene.
This motivates our unified approach to perception and future prediction that implicitly represents occupancy and flow over time with a single neural network.
arXiv Detail & Related papers (2023-08-02T23:39:24Z) - Generalized Few-Shot 3D Object Detection of LiDAR Point Cloud for
Autonomous Driving [91.39625612027386]
We propose a novel task, called generalized few-shot 3D object detection, where we have a large amount of training data for common (base) objects, but only a few data for rare (novel) classes.
Specifically, we analyze in-depth differences between images and point clouds, and then present a practical principle for the few-shot setting in the 3D LiDAR dataset.
To solve this task, we propose an incremental fine-tuning method to extend existing 3D detection models to recognize both common and rare objects.
arXiv Detail & Related papers (2023-02-08T07:11:36Z) - Anomaly Detection in Driving by Cluster Analysis Twice [0.0]
This study proposes a method namely Anomaly Detection in Driving by Cluster Analysis Twice (ADDCAT)
An event is said to be an anomaly if it never fits with the major cluster, which is considered as the pattern of normality in driving.
This method provides a way to detect anomalies in driving with no prior training processes and huge computational costs needed.
arXiv Detail & Related papers (2022-12-15T09:53:49Z) - Are we certain it's anomalous? [57.729669157989235]
Anomaly detection in time series is a complex task since anomalies are rare due to highly non-linear temporal correlations.
Here we propose the novel use of Hyperbolic uncertainty for Anomaly Detection (HypAD)
HypAD learns self-supervisedly to reconstruct the input signal.
arXiv Detail & Related papers (2022-11-16T21:31:39Z) - Behavioral Intention Prediction in Driving Scenes: A Survey [70.53285924851767]
Behavioral Intention Prediction (BIP) simulates a human consideration process and fulfills the early prediction of specific behaviors.
This work provides a comprehensive review of BIP from the available datasets, key factors and challenges, pedestrian-centric and vehicle-centric BIP approaches, and BIP-aware applications.
arXiv Detail & Related papers (2022-11-01T11:07:37Z) - Driving Anomaly Detection Using Conditional Generative Adversarial
Network [26.45460503638333]
This study proposes an unsupervised method to quantify driving anomalies using a conditional generative adversarial network (GAN)
The approach predicts upcoming driving scenarios by conditioning the models on the previously observed signals.
The results are validated with perceptual evaluations, where annotators are asked to assess the risk and familiarity of the videos detected with high anomaly scores.
arXiv Detail & Related papers (2022-03-15T22:10:01Z) - Object-centric and memory-guided normality reconstruction for video
anomaly detection [56.64792194894702]
This paper addresses anomaly detection problem for videosurveillance.
Due to the inherent rarity and heterogeneity of abnormal events, the problem is viewed as a normality modeling strategy.
Our model learns object-centric normal patterns without seeing anomalous samples during training.
arXiv Detail & Related papers (2022-03-07T19:28:39Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
We propose a novel anomaly detection model called Discriminatory Auto-Encoder (DAE)
It uses the baseline of a regular LSTM-based auto-encoder but with several decoders, each getting data of a specific flight phase.
Results show that the DAE achieves better results in both accuracy and speed of detection.
arXiv Detail & Related papers (2021-09-08T14:07:55Z) - A model for traffic incident prediction using emergency braking data [77.34726150561087]
We address the fundamental problem of data scarcity in road traffic accident prediction by training our model on emergency braking events instead of accidents.
We present a prototype implementing a traffic incident prediction model for Germany based on emergency braking data from Mercedes-Benz vehicles.
arXiv Detail & Related papers (2021-02-12T18:17:12Z) - A Graph Convolutional Network with Signal Phasing Information for
Arterial Traffic Prediction [63.470149585093665]
arterial traffic prediction plays a crucial role in the development of modern intelligent transportation systems.
Many existing studies on arterial traffic prediction only consider temporal measurements of flow and occupancy from loop sensors and neglect the rich spatial relationships between upstream and downstream detectors.
We fill this gap by enhancing a deep learning approach, Diffusion Convolutional Recurrent Neural Network, with spatial information generated from signal timing plans at targeted intersections.
arXiv Detail & Related papers (2020-12-25T01:40:29Z) - Building an Automated and Self-Aware Anomaly Detection System [0.0]
It can be challenging to proactively monitor a large number of diverse and constantly changing time series for anomalies.
Traditionally, variations in the data generation processes and patterns have required strong modeling expertise to create models that accurately flag anomalies.
In this paper, we describe an anomaly detection system that overcomes this common challenge by keeping track of its own performance and making changes as necessary to each model without requiring manual intervention.
arXiv Detail & Related papers (2020-11-10T11:19:07Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGAN is an unsupervised anomaly detection approach built on Generative Adversarial Networks (GANs)
To capture the temporal correlations of time series, we use LSTM Recurrent Neural Networks as base models for Generators and Critics.
To demonstrate the performance and generalizability of our approach, we test several anomaly scoring techniques and report the best-suited one.
arXiv Detail & Related papers (2020-09-16T15:52:04Z) - ARCADe: A Rapid Continual Anomaly Detector [25.34227775187408]
We address a novel learning problem of continual anomaly detection (CAD)
We propose ARCADe, an approach to train neural networks to be robust against the major challenges of this new learning problem.
The results of our experiments on three datasets show that ARCADe substantially outperforms baselines from the continual learning and anomaly detection literature.
arXiv Detail & Related papers (2020-08-10T11:59:32Z) - RePAD: Real-time Proactive Anomaly Detection for Time Series [0.27528170226206433]
RePAD is a Real-time Proactive Anomaly Detection algorithm for streaming time series based on Long Short-Term Memory (LSTM)
By dynamically adjusting the detection threshold over time, RePAD is able to tolerate minor pattern change in time series and detect anomalies either proactively or on time.
arXiv Detail & Related papers (2020-01-24T09:13:33Z) - An Intelligent and Time-Efficient DDoS Identification Framework for
Real-Time Enterprise Networks SAD-F: Spark Based Anomaly Detection Framework [0.5811502603310248]
We will be exploring security analytic techniques for DDoS anomaly detection using different machine learning techniques.
In this paper, we are proposing a novel approach which deals with real traffic as input to the system.
We study and compare the performance factor of our proposed framework on three different testbeds.
arXiv Detail & Related papers (2020-01-21T06:05:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.