論文の概要: Analyzing the Traffic of MANETs using Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2212.08923v1
- Date: Sat, 17 Dec 2022 18:13:20 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-20 18:42:51.083728
- Title: Analyzing the Traffic of MANETs using Graph Neural Networks
- Title(参考訳): グラフニューラルネットワークを用いたMANETのトラフィック解析
- Authors: Taha Tekdogan
- Abstract要約: 本研究は,人気のあるGNNフレームワークであるPyTorch GeometricにMANETデータセットを実装した。
GNNを用いてMANETのトラフィックを解析する方法を示す。
我々は、MANET上でのGNNの性能と効率を測定するために、いくつかの評価指標を解釈する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph Neural Networks (GNNs) have been taking role in many areas, thanks to
their expressive power on graph-structured data. On the other hand, Mobile
Ad-Hoc Networks (MANETs) are gaining attention as network technologies have
been taken to the 5G level. However, there is no study that evaluates the
efficiency of GNNs on MANETs. In this study, we aim to fill this absence by
implementing a MANET dataset in a popular GNN framework, i.e., PyTorch
Geometric; and show how GNNs can be utilized to analyze the traffic of MANETs.
We operate an edge prediction task on the dataset with GraphSAGE (SAG) model,
where SAG model tries to predict whether there is a link between two nodes. We
construe several evaluation metrics to measure the performance and efficiency
of GNNs on MANETs. SAG model showed 82.1 accuracy on average in the
experiments.
- Abstract(参考訳): グラフ構造データに対する表現力のおかげで、グラフニューラルネットワーク(gnn)が多くの領域で役割を担っている。
一方,モバイルアドホックネットワーク(MANET)は,ネットワーク技術が5Gレベルに引き上げられ,注目を集めている。
しかし、MANET上でのGNNの効率を評価する研究は存在しない。
本研究では、PyTorch Geometric(PyTorch Geometric)という人気のGNNフレームワークでMANETデータセットを実装し、MANETのトラフィックを分析するためにどのようにGNNを利用するかを示す。
我々は、グラフSAGE(SAG)モデルを用いてデータセット上でエッジ予測タスクを運用し、SAGモデルは2つのノード間のリンクが存在するかどうかを予測しようとする。
我々は、MANETにおけるGNNの性能と効率を測定するために、いくつかの評価指標を解釈する。
SAGモデルは実験で平均82.1の精度を示した。
関連論文リスト
- PROXI: Challenging the GNNs for Link Prediction [3.8233569758620063]
本稿では,グラフと属性空間の両方におけるノードペアの近接情報を活用するPROXIを紹介する。
標準機械学習(ML)モデルは競争力があり、最先端のGNNモデルよりも優れています。
ProXIによる従来のGNNの拡張はリンク予測性能を大幅に向上させることを示す。
論文 参考訳(メタデータ) (2024-10-02T17:57:38Z) - Information Flow in Graph Neural Networks: A Clinical Triage Use Case [49.86931948849343]
グラフニューラルネットワーク(GNN)は、マルチモーダルグラフとマルチリレーショナルグラフを処理する能力によって、医療やその他の領域で人気を集めている。
GNNにおける埋め込み情報のフローが知識グラフ(KG)におけるリンクの予測に与える影響について検討する。
以上の結果から,ドメイン知識をGNN接続に組み込むことで,KGと同じ接続を使用する場合や,制約のない埋め込み伝搬を行う場合よりも優れた性能が得られることが示された。
論文 参考訳(メタデータ) (2023-09-12T09:18:12Z) - Attention-Based Recommendation On Graphs [9.558392439655012]
グラフニューラルネットワーク(GNN)は、さまざまなタスクで顕著なパフォーマンスを示している。
本研究では,モデルベースレコメンデータシステムとしてGARecを提案する。
提案手法は,既存のモデルベース非グラフニューラルネットワークとグラフニューラルネットワークを異なるMovieLensデータセットで比較した。
論文 参考訳(メタデータ) (2022-01-04T21:02:02Z) - Measuring and Sampling: A Metric-guided Subgraph Learning Framework for
Graph Neural Network [11.017348743924426]
グラフニューラルネットワーク(GNN)のためのMetric-Guided(MeGuide)サブグラフ学習フレームワークを提案する。
MeGuideでは、サブグラフサンプリングとミニバッチベースのトレーニングのガイドとして、Feature SmoothnessとConnection Failure Distanceという2つの新しいメトリクスを使用している。
複数のデータセット上で様々なGNNをトレーニングする上で,MeGuideの有効性と有効性を示す。
論文 参考訳(メタデータ) (2021-12-30T11:00:00Z) - Network In Graph Neural Network [9.951298152023691]
本稿では,任意のGNNモデルに対して,モデルをより深くすることでモデル容量を増大させるモデルに依存しない手法を提案する。
GNNレイヤの追加や拡張の代わりに、NGNNは、各GNNレイヤに非線形フィードフォワードニューラルネットワーク層を挿入することで、GNNモデルを深めている。
論文 参考訳(メタデータ) (2021-11-23T03:58:56Z) - A Unified Lottery Ticket Hypothesis for Graph Neural Networks [82.31087406264437]
本稿では,グラフ隣接行列とモデルの重み付けを同時に行う統一GNNスペーシフィケーション(UGS)フレームワークを提案する。
グラフ宝くじ(GLT)をコアサブデータセットとスパースサブネットワークのペアとして定義することにより、人気のある宝くじチケット仮説を初めてGNNsにさらに一般化します。
論文 参考訳(メタデータ) (2021-02-12T21:52:43Z) - Learning to Drop: Robust Graph Neural Network via Topological Denoising [50.81722989898142]
グラフニューラルネットワーク(GNN)のロバスト性および一般化性能を向上させるために,パラメータ化トポロジカルデノイングネットワークであるPTDNetを提案する。
PTDNetは、パラメータ化されたネットワークでスパーシファイドグラフ内のエッジ数をペナル化することで、タスク非関連エッジを創出する。
PTDNetはGNNの性能を著しく向上させ,さらにノイズの多いデータセットでは性能が向上することを示す。
論文 参考訳(メタデータ) (2020-11-13T18:53:21Z) - Distance Encoding: Design Provably More Powerful Neural Networks for
Graph Representation Learning [63.97983530843762]
グラフニューラルネットワーク(GNN)はグラフ表現学習において大きな成功を収めている。
GNNは、実際には非常に異なるグラフ部分構造に対して同一の表現を生成する。
より強力なGNNは、最近高階試験を模倣して提案され、基礎となるグラフ構造を疎結合にできないため、非効率である。
本稿では,グラフ表現学習の新たなクラスとして距離分解(DE)を提案する。
論文 参考訳(メタデータ) (2020-08-31T23:15:40Z) - Binarized Graph Neural Network [65.20589262811677]
我々は二項化グラフニューラルネットワークを開発し、二項化ネットワークパラメータを用いてノードのバイナリ表現を学習する。
提案手法は既存のGNNベースの埋め込み手法にシームレスに統合できる。
実験により、提案された二項化グラフニューラルネットワーク、すなわちBGNは、時間と空間の両方の観点から、桁違いに効率的であることが示されている。
論文 参考訳(メタデータ) (2020-04-19T09:43:14Z) - Graphs, Convolutions, and Neural Networks: From Graph Filters to Graph
Neural Networks [183.97265247061847]
我々はグラフ信号処理を活用してグラフニューラルネットワーク(GNN)の表現空間を特徴付ける。
GNNにおけるグラフ畳み込みフィルタの役割について議論し、そのようなフィルタで構築されたアーキテクチャは、置換同値の基本的な性質と位相変化に対する安定性を持つことを示す。
また,ロボット群に対するリコメンデータシステムや分散型コントローラの学習におけるGNNの利用について検討した。
論文 参考訳(メタデータ) (2020-03-08T13:02:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。