論文の概要: Artificial Intelligence to Enhance Mission Science Output for In-situ
Observations: Dealing with the Sparse Data Challenge
- arxiv url: http://arxiv.org/abs/2212.13289v1
- Date: Mon, 26 Dec 2022 20:05:21 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-29 16:21:09.192614
- Title: Artificial Intelligence to Enhance Mission Science Output for In-situ
Observations: Dealing with the Sparse Data Challenge
- Title(参考訳): その場観測のためのミッション科学出力を高める人工知能:スパースデータチャレンジへの取り組み
- Authors: M. I. Sitnov, G. K. Stephens, V. G. Merkin, C.-P. Wang, D. Turner, K.
Genestreti, M. Argall, T. Y. Chen, A. Y. Ukhorskiy, S. Wing, Y.-H. Liu
- Abstract要約: 地球の磁気圏では、低地球軌道を超える専用のプローブが1ダースも存在せず、いつでもその場で観測できる。
機械学習、データマイニング、データ同化を含む新しい人工知能(AI)メソッドは、このスパースデータ課題を満たすために開発する必要がある。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the Earth's magnetosphere, there are fewer than a dozen dedicated probes
beyond low-Earth orbit making in-situ observations at any given time. As a
result, we poorly understand its global structure and evolution, the mechanisms
of its main activity processes, magnetic storms, and substorms. New Artificial
Intelligence (AI) methods, including machine learning, data mining, and data
assimilation, as well as new AI-enabled missions will need to be developed to
meet this Sparse Data challenge.
- Abstract(参考訳): 地球の磁気圏では、低軌道を超える専用のプローブは10個以下あり、いつでもその場で観測できる。
結果として、その地球構造と進化、主活動過程、磁気嵐、サブストームのメカニズムを十分に理解していないのです。
機械学習、データマイニング、データ同化を含む新しい人工知能(AI)メソッドと、このスパースデータ課題を満たすために、新たなAI対応ミッションを開発する必要がある。
関連論文リスト
- Foundation Models for Remote Sensing and Earth Observation: A Survey [101.77425018347557]
本調査は、リモートセンシング基礎モデル(RSFM)の新しい分野を体系的にレビューする。
モチベーションと背景の概要から始まり、続いて基本概念が導入された。
我々はこれらのモデルを公開データセットと比較し、既存の課題について議論し、今後の研究方向性を提案する。
論文 参考訳(メタデータ) (2024-10-22T01:08:21Z) - Towards a Reliable Offline Personal AI Assistant for Long Duration Spaceflight [4.382282101149638]
本稿では, GPT, Retrieval-Augmented Generation (RAG), Knowledge Graphs (KGs), Augmented Reality (AR)を統合したMETISなどの拡張システムを提案する。
そのアイデアは、宇宙飛行士が自然言語のクエリを使って、より直感的に自分のデータと対話し、ARでリアルタイム情報を視覚化できるようにすることだ。
論文 参考訳(メタデータ) (2024-10-21T18:08:42Z) - Nature-Inspired Local Propagation [68.63385571967267]
自然学習プロセスは、データの表現と学習が局所性を尊重するような方法で交わされるメカニズムに依存している。
ハミルトン方程式の構造を導出した「学習の法則」のアルゴリズム的解釈は、伝播の速度が無限大になるときにバックプロパゲーションに還元されることを示す。
これにより、バックプロパゲーションと提案されたローカルアルゴリズムの置き換えに基づく完全なオンライン情報に基づく機械学習への扉が開く。
論文 参考訳(メタデータ) (2024-02-04T21:43:37Z) - There Are No Data Like More Data- Datasets for Deep Learning in Earth
Observation [6.839093061382966]
私たちは、地球観測データ専用の機械学習データセットをスポットライトに入れたいと思っています。
我々は、私たちのデータの性質が地球観測コミュニティを区別するものであるという理解に貢献したいと考えています。
論文 参考訳(メタデータ) (2023-10-30T02:19:16Z) - Artificial intelligence to advance Earth observation: : A review of models, recent trends, and pathways forward [60.43248801101935]
本稿では、生のEOデータから使用可能なEOベースの情報への移行を通知し、支援する、重要な科学的ツールとアプローチについて、鳥の視点で説明する。
i)コンピュータビジョン, (ii) 機械学習, (iii) 高度な処理とコンピューティング, (iv) 知識ベースAI, (v) 説明可能なAIと因果推論, (vi) 物理認識モデル, (vii) ユーザ中心のアプローチ, (viii) EOにおけるML技術の大量使用に関する倫理的・社会的問題に関する議論の議論を網羅する。
論文 参考訳(メタデータ) (2023-05-15T07:47:24Z) - Enabling Astronaut Self-Scheduling using a Robust Advanced Modelling and
Scheduling system: an assessment during a Mars analogue mission [44.621922701019336]
アナログ宇宙飛行士の乗組員によるコンピュータ意思決定支援ツールの使用について検討した。
提案されたツールはRomieと呼ばれ、Robost Advanced Modelling and Scheduling (RAMS)システムの新しいカテゴリに属している。
論文 参考訳(メタデータ) (2023-01-14T21:10:05Z) - Learning from learning machines: a new generation of AI technology to
meet the needs of science [59.261050918992325]
科学的な発見のためのAIの有用性を高めるための新たな機会と課題を概説する。
産業におけるAIの目標と科学におけるAIの目標の区別は、データ内のパターンを識別することと、データから世界のパターンを発見することとの間に緊張を生じさせる。
論文 参考訳(メタデータ) (2021-11-27T00:55:21Z) - Towards a Collective Agenda on AI for Earth Science Data Analysis [39.78763440312085]
我々は、研究者、特に若い世代に、リモートセンシングと地球科学の真の進歩のためにこれらの課題に取り組むように促すことを目指している。
地球科学に関するAIの宣言では、研究者、特に若い世代がリモートセンシングと地球科学の真の進歩のためにこれらの課題に取り組むよう促すことを目指しています。
論文 参考訳(メタデータ) (2021-04-11T20:54:44Z) - Automated identification of transiting exoplanet candidates in NASA
Transiting Exoplanets Survey Satellite (TESS) data with machine learning
methods [1.9491825010518622]
AI/ML ThetaRayシステムは当初ケプラー太陽系外惑星のデータで訓練され、確認された太陽系外惑星で検証される。
TESSミッションで発生したしきい値交差イベント(TCE)の10,803光曲線へのThetaRayの適用により、39の新たな惑星候補が発見された。
論文 参考訳(メタデータ) (2021-02-20T12:28:39Z) - Empowering Things with Intelligence: A Survey of the Progress,
Challenges, and Opportunities in Artificial Intelligence of Things [98.10037444792444]
AIがIoTをより速く、より賢く、よりグリーンで、より安全にするための力を与える方法を示します。
まず、認識、学習、推論、行動の4つの視点から、IoTのためのAI研究の進歩を示す。
最後に、私たちの世界を深く再形成する可能性が高いAIoTの有望な応用をいくつかまとめる。
論文 参考訳(メタデータ) (2020-11-17T13:14:28Z) - Batch Exploration with Examples for Scalable Robotic Reinforcement
Learning [63.552788688544254]
BEE(Batch Exploration with Examples)は、重要状態の画像の少ない数の人間がガイドする状態空間の関連領域を探索する。
BEEは、シミュレーションと本物のフランカロボットの両方で、視覚ベースの操作に挑戦することができる。
論文 参考訳(メタデータ) (2020-10-22T17:49:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。