論文の概要: Towards a Collective Agenda on AI for Earth Science Data Analysis
- arxiv url: http://arxiv.org/abs/2104.05107v1
- Date: Sun, 11 Apr 2021 20:54:44 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-14 06:18:04.726476
- Title: Towards a Collective Agenda on AI for Earth Science Data Analysis
- Title(参考訳): 地球科学データ分析のためのAIの集合的アジェンダを目指して
- Authors: Devis Tuia, Ribana Roscher, Jan Dirk Wegner, Nathan Jacobs, Xiao Xiang
Zhu, Gustau Camps-Valls
- Abstract要約: 我々は、研究者、特に若い世代に、リモートセンシングと地球科学の真の進歩のためにこれらの課題に取り組むように促すことを目指している。
地球科学に関するAIの宣言では、研究者、特に若い世代がリモートセンシングと地球科学の真の進歩のためにこれらの課題に取り組むよう促すことを目指しています。
- 参考スコア(独自算出の注目度): 39.78763440312085
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In the last years we have witnessed the fields of geosciences and remote
sensing and artificial intelligence to become closer. Thanks to both the
massive availability of observational data, improved simulations, and
algorithmic advances, these disciplines have found common objectives and
challenges to advance the modeling and understanding of the Earth system.
Despite such great opportunities, we also observed a worrying tendency to
remain in disciplinary comfort zones applying recent advances from artificial
intelligence on well resolved remote sensing problems. Here we take a position
on research directions where we think the interface between these fields will
have the most impact and become potential game changers. In our declared agenda
for AI on Earth sciences, we aim to inspire researchers, especially the younger
generations, to tackle these challenges for a real advance of remote sensing
and the geosciences.
- Abstract(参考訳): 過去数年間、我々は地球科学、リモートセンシング、人工知能の分野が近くなるのを目撃してきた。
観測データの大量利用、シミュレーションの改善、アルゴリズムの進歩により、これらの分野は地球系のモデリングと理解を進めるための共通の目的と課題を見出した。
このような大きな機会にもかかわらず、人工知能の最近の進歩をよく解決されたリモートセンシング問題に適用した、懲戒的快適地帯に留まる心配の傾向も観察した。
ここでは、これらのフィールド間のインターフェースが最も影響を受け、潜在的なゲームチェンジャーになり得る研究方向の立場を取ります。
我々の宣言した地球科学に関するAIに関する議題では、研究者、特に若い世代がリモートセンシングと地球科学の真の進歩のためにこれらの課題に取り組むよう刺激することを目的としています。
関連論文リスト
- Foundation Models for Remote Sensing and Earth Observation: A Survey [101.77425018347557]
本調査は、リモートセンシング基礎モデル(RSFM)の新しい分野を体系的にレビューする。
モチベーションと背景の概要から始まり、続いて基本概念が導入された。
我々はこれらのモデルを公開データセットと比較し、既存の課題について議論し、今後の研究方向性を提案する。
論文 参考訳(メタデータ) (2024-10-22T01:08:21Z) - GeoAI in Social Science [0.9527350779226282]
GeoAI(Geospatial AI、地理空間的人工知能)は、人工知能(AI)、地理空間的ビッグデータ、そして膨大なコンピューティングパワーを活用して、高度な自動化と知能の問題を解決するエキサイティングな新しい分野である。
本稿では、社会科学研究におけるAIの進歩を概観し、GeoAIを用いて重要なデータと知識ギャップを埋める重要な進歩について述べる。
論文 参考訳(メタデータ) (2023-12-19T20:23:18Z) - Deep Learning for Spatiotemporal Big Data: A Vision on Opportunities and
Challenges [4.497634148674422]
一時的ビッグデータは、これまで不可能だった問題を解決する新たな機会を育むことができる。
ビッグデータの特徴は、ディープラーニング技術に新たな課題をもたらす。
論文 参考訳(メタデータ) (2023-10-30T19:12:51Z) - Artificial Intelligence for Science in Quantum, Atomistic, and Continuum Systems [268.585904751315]
科学のためのAI(AI4Science)として知られる新しい研究領域
領域は、物理世界(波動関数と電子密度)、原子(分子、タンパク質、物質、相互作用)、マクロ(流体、気候、地下)まで理解することを目的としている。
主要な課題は、物理第一原理、特に対称性を深層学習法によって自然システムで捉える方法である。
論文 参考訳(メタデータ) (2023-07-17T12:14:14Z) - Philosophical Foundations of GeoAI: Exploring Sustainability, Diversity,
and Bias in GeoAI and Spatial Data Science [1.0152838128195467]
本章では、GeoAIと空間データ科学の哲学的基盤を形成する基本的な前提と原則について述べる。
それは、持続可能性、トレーニングデータのバイアス、スキーマ知識の多様性、そして、統一倫理的な視点からGeoAIシステムの中立性(潜在的に欠如している)といったテーマを強調している。
論文 参考訳(メタデータ) (2023-03-27T14:01:22Z) - AI Security for Geoscience and Remote Sensing: Challenges and Future
Trends [16.001238774325333]
本稿では,地球科学とリモートセンシング分野におけるAIセキュリティの現況を概観する。
敵攻撃、バックドア攻撃、連合学習、不確実性、説明可能性の5つの重要な側面をカバーしている。
著者の知識を最大限に活用するために,本稿は,地球科学とRSコミュニティにおけるAIセキュリティ関連研究の体系的レビューを行う最初の試みである。
論文 参考訳(メタデータ) (2022-12-19T10:54:51Z) - Selected Trends in Artificial Intelligence for Space Applications [69.3474006357492]
この章は、差別化可能なインテリジェンスとオンボード機械学習に焦点を当てている。
欧州宇宙機関(ESA)Advanced Concepts Team(ACT)から選ばれたいくつかのプロジェクトについて論じる。
論文 参考訳(メタデータ) (2022-12-10T07:49:50Z) - GeoAI at ACM SIGSPATIAL: The New Frontier of Geospatial Artificial
Intelligence Research [4.723592249469651]
本稿では,GeoAIオープン研究の方向性について再検討し,議論する。
このワークショップシリーズは、地質学者、コンピュータ科学者、エンジニア、起業家、意思決定者のためのネクサスを育ててきた。
論文 参考訳(メタデータ) (2022-10-20T18:02:17Z) - Learning from learning machines: a new generation of AI technology to
meet the needs of science [59.261050918992325]
科学的な発見のためのAIの有用性を高めるための新たな機会と課題を概説する。
産業におけるAIの目標と科学におけるAIの目標の区別は、データ内のパターンを識別することと、データから世界のパターンを発見することとの間に緊張を生じさせる。
論文 参考訳(メタデータ) (2021-11-27T00:55:21Z) - Empowering Things with Intelligence: A Survey of the Progress,
Challenges, and Opportunities in Artificial Intelligence of Things [98.10037444792444]
AIがIoTをより速く、より賢く、よりグリーンで、より安全にするための力を与える方法を示します。
まず、認識、学習、推論、行動の4つの視点から、IoTのためのAI研究の進歩を示す。
最後に、私たちの世界を深く再形成する可能性が高いAIoTの有望な応用をいくつかまとめる。
論文 参考訳(メタデータ) (2020-11-17T13:14:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。