論文の概要: A Hypervolume Based Approach to Rank Intuitionistic Fuzzy Sets and Its
Extension to Multi-criteria Decision Making Under Uncertainty
- arxiv url: http://arxiv.org/abs/2212.13908v1
- Date: Sun, 25 Dec 2022 11:57:04 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-29 15:54:30.057228
- Title: A Hypervolume Based Approach to Rank Intuitionistic Fuzzy Sets and Its
Extension to Multi-criteria Decision Making Under Uncertainty
- Title(参考訳): ランク直観的ファジィ集合へのハイパーボリュームに基づくアプローチと不確かさ下での多基準決定への拡張
- Authors: Kaan Deveci and Onder Guler
- Abstract要約: 距離に基づくランク付け手法による直観的ファジィ集合のランク付けには、直観的ファジィ集合と基準点の間の距離を計算する必要がある。
本稿では、この仮定が非線形距離関数のいずれかに有効でない理由を数学的に証明する。
距離に基づくランキングの代替として、ハイパーボリュームベースのランキングアプローチを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Ranking intuitionistic fuzzy sets with distance based ranking methods
requires to calculate the distance between intuitionistic fuzzy set and a
reference point which is known to have either maximum (positive ideal solution)
or minimum (negative ideal solution) value. These group of approaches assume
that as the distance of an intuitionistic fuzzy set to the reference point is
decreases, the similarity of intuitionistic fuzzy set with that point
increases. This is a misconception because an intuitionistic fuzzy set which
has the shortest distance to positive ideal solution does not have to be the
furthest from negative ideal solution for all circumstances when the distance
function is nonlinear. This paper gives a mathematical proof of why this
assumption is not valid for any of the non-linear distance functions and
suggests a hypervolume based ranking approach as an alternative to distance
based ranking. In addition, the suggested ranking approach is extended as a new
multicriteria decision making method, HyperVolume based ASsessment (HVAS). HVAS
is applied for multicriteria assessment of Turkey's energy alternatives.
Results are compared with three well known distance based multicriteria
decision making methods (TOPSIS, VIKOR, and CODAS).
- Abstract(参考訳): 距離に基づくランク付け手法による直観的ファジィ集合のランク付けには、直観的ファジィ集合と最大値(正の理想解)または最小値(負の理想解)を持つことが知られている基準点の間の距離を計算する必要がある。
これらのアプローチのグループは、基準点への直観的ファジィ集合の距離が減少すると、その点を含む直観的ファジィ集合の類似性が増加すると仮定する。
これは、直観主義的ファジィ集合が正のイデアル解に最短距離を持つので、距離関数が非線形であるすべての状況において、負のイデアル解から最も遠ざかる必要はないからである。
本稿では,この仮定が非線形距離関数のいずれにも当てはまらない理由を数学的に証明し,その代替としてハイパーボリュームに基づくランキング手法を提案する。
さらに、提案するランキング手法は、HyperVolume based ASsessment (HVAS) と呼ばれる新しいマルチ基準決定手法として拡張される。
HVASはトルコのエネルギー代替品の多基準評価に適用される。
その結果,TOPSIS,VIKOR,CODASの3つの距離に基づく多基準意思決定手法と比較した。
関連論文リスト
- Likelihood Ratio Confidence Sets for Sequential Decision Making [51.66638486226482]
確率に基づく推論の原理を再検討し、確率比を用いて妥当な信頼シーケンスを構築することを提案する。
本手法は, 精度の高い問題に特に適している。
提案手法は,オンライン凸最適化への接続に光を当てることにより,推定器の最適シーケンスを確実に選択する方法を示す。
論文 参考訳(メタデータ) (2023-11-08T00:10:21Z) - A Finite-Horizon Approach to Active Level Set Estimation [0.7366405857677227]
レベルセット推定(LSE)における空間サンプリングの文脈におけるアクティブラーニングの問題点について考察する。
1次元でLSEを行うための有限水平探索法を提案するが、最終的な推定誤差と一定数のサンプルの移動距離のバランスは最適である。
結果の最適化問題をクローズドな方法で解き、その結果のポリシーが既存のアプローチを一般化することを示す。
論文 参考訳(メタデータ) (2023-10-18T14:11:41Z) - Robust Ellipsoid Fitting Using Axial Distance and Combination [15.39157287924673]
ランダムサンプルコンセンサス(RANSAC)では、楕円体フィッティングの問題は点からモデルまでの距離を最小化する問題として定式化することができる。
代数的距離から変換される軸距離と呼ばれる新しい距離計量を提案する。
軸方向距離とサンプソン距離の組合せを用いて, 試料集束型楕円体フィッティング法を提案する。
論文 参考訳(メタデータ) (2023-04-02T11:52:33Z) - Inference on Optimal Dynamic Policies via Softmax Approximation [27.396891119011215]
最適な治療体制に対するソフトマックスの簡単な近似は、真に最適な治療体制に対する妥当な推測を達成できることを示す。
我々の研究は、半パラメトリック推論と$g$-estimationの技法と適切な配列中央極限定理を組み合わせたものである。
論文 参考訳(メタデータ) (2023-03-08T07:42:47Z) - STORM+: Fully Adaptive SGD with Momentum for Nonconvex Optimization [74.1615979057429]
本研究では,スムーズな損失関数に対する期待値である非バッチ最適化問題について検討する。
我々の研究は、学習率と運動量パラメータを適応的に設定する新しいアプローチとともに、STORMアルゴリズムの上に構築されている。
論文 参考訳(メタデータ) (2021-11-01T15:43:36Z) - False Correlation Reduction for Offline Reinforcement Learning [115.11954432080749]
本稿では,実効的かつ理論的に証明可能なアルゴリズムであるオフラインRLに対するfalSe Correlation Reduction (SCORE)を提案する。
SCOREは、標準ベンチマーク(D4RL)において、様々なタスクにおいて3.1倍の高速化でSoTA性能を達成することを実証的に示す。
論文 参考訳(メタデータ) (2021-10-24T15:34:03Z) - Coordinate Descent Methods for DC Minimization [12.284934135116515]
差分凸(英: difference-of-Convex、DC)とは、2つの凸関数の差を最小化する問題である。
本稿では,非次元の1次元サブプロブレムを世界規模で提案し,座標の定常点に収束することが保証される。
論文 参考訳(メタデータ) (2021-09-09T12:44:06Z) - Regret-Optimal Filtering [57.51328978669528]
後悔最適化レンズによる線形状態空間モデルにおけるフィルタの問題を検討する。
我々は, 透視推定器の誤差エネルギー推定における後悔の概念に基づいて, フィルタ設計のための新しい基準を定式化する。
3つのリッキー方程式と1つのリャプノフ方程式を解くことで、後悔と最適推定が容易に実現できることを示す。
論文 参考訳(メタデータ) (2021-01-25T19:06:52Z) - Sparse Feature Selection Makes Batch Reinforcement Learning More Sample
Efficient [62.24615324523435]
本稿では,スパース線形関数近似を用いた高次元バッチ強化学習(RL)の統計的解析を行う。
候補となる機能が多数存在する場合,提案手法がバッチRLをより効率的にサンプリングできるという事実に光を当てる。
論文 参考訳(メタデータ) (2020-11-08T16:48:02Z) - A Novel Fuzzy Approximate Reasoning Method Based on Extended Distance
Measure in SISO Fuzzy System [0.0]
本稿ではファジィ近似推論のオリジナル手法を提案する。
人工知能(AI)と計算知能(CI)の不確実性推論の新しい研究方向を開くことができる
論文 参考訳(メタデータ) (2020-03-27T02:31:53Z) - Support recovery and sup-norm convergence rates for sparse pivotal
estimation [79.13844065776928]
高次元スパース回帰では、ピボット推定器は最適な正規化パラメータがノイズレベルに依存しない推定器である。
非滑らかで滑らかな単一タスクとマルチタスク正方形ラッソ型推定器に対するミニマックス超ノルム収束率を示す。
論文 参考訳(メタデータ) (2020-01-15T16:11:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。