Graph state-space models
- URL: http://arxiv.org/abs/2301.01741v1
- Date: Wed, 4 Jan 2023 18:15:07 GMT
- Title: Graph state-space models
- Authors: Daniele Zambon, Andrea Cini, Lorenzo Livi, Cesare Alippi
- Abstract summary: State-space models are used to describe time series and operate by maintaining an updated representation of the system state from which predictions are made.
The manuscript aims, for the first time, for the first time filling this gap by matching unattended state data where the functional graph capturing latent dependencies is learned directly from data and is allowed to change over time.
An encoder-decoder architecture is proposed to learn the state-space model end-to-end on a downstream task.
- Score: 19.88814714919019
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: State-space models constitute an effective modeling tool to describe
multivariate time series and operate by maintaining an updated representation
of the system state from which predictions are made. Within this framework,
relational inductive biases, e.g., associated with functional dependencies
existing among signals, are not explicitly exploited leaving unattended great
opportunities for effective modeling approaches. The manuscript aims, for the
first time, at filling this gap by matching state-space modeling and
spatio-temporal data where the relational information, say the functional graph
capturing latent dependencies, is learned directly from data and is allowed to
change over time. Within a probabilistic formulation that accounts for the
uncertainty in the data-generating process, an encoder-decoder architecture is
proposed to learn the state-space model end-to-end on a downstream task. The
proposed methodological framework generalizes several state-of-the-art methods
and demonstrates to be effective in extracting meaningful relational
information while achieving optimal forecasting performance in controlled
environments.
Related papers
- Learning Space-Time Continuous Neural PDEs from Partially Observed
States [13.01244901400942]
We introduce a grid-independent model learning partial differential equations (PDEs) from noisy and partial observations on irregular grids.
We propose a space-time continuous latent neural PDE model with an efficient probabilistic framework and a novel design encoder for improved data efficiency and grid independence.
arXiv Detail & Related papers (2023-07-09T06:53:59Z) - ChiroDiff: Modelling chirographic data with Diffusion Models [132.5223191478268]
We introduce a powerful model-class namely "Denoising Diffusion Probabilistic Models" or DDPMs for chirographic data.
Our model named "ChiroDiff", being non-autoregressive, learns to capture holistic concepts and therefore remains resilient to higher temporal sampling rate.
arXiv Detail & Related papers (2023-04-07T15:17:48Z) - Spectral Representation Learning for Conditional Moment Models [33.34244475589745]
We propose a procedure that automatically learns representations with controlled measures of ill-posedness.
Our method approximates a linear representation defined by the spectral decomposition of a conditional expectation operator.
We show this representation can be efficiently estimated from data, and establish L2 consistency for the resulting estimator.
arXiv Detail & Related papers (2022-10-29T07:48:29Z) - Schema-aware Reference as Prompt Improves Data-Efficient Knowledge Graph
Construction [57.854498238624366]
We propose a retrieval-augmented approach, which retrieves schema-aware Reference As Prompt (RAP) for data-efficient knowledge graph construction.
RAP can dynamically leverage schema and knowledge inherited from human-annotated and weak-supervised data as a prompt for each sample.
arXiv Detail & Related papers (2022-10-19T16:40:28Z) - Diffusion-based Time Series Imputation and Forecasting with Structured
State Space Models [2.299617836036273]
We put forward SSSD, an imputation model that relies on two emerging technologies,conditional diffusion models and structured state space models.
We demonstrate that SSSD matches or even exceeds state-of-the-art probabilistic imputation and forecasting performance on a broad range of data sets and different missingness scenarios.
arXiv Detail & Related papers (2022-08-19T15:29:43Z) - Information-Theoretic Odometry Learning [83.36195426897768]
We propose a unified information theoretic framework for learning-motivated methods aimed at odometry estimation.
The proposed framework provides an elegant tool for performance evaluation and understanding in information-theoretic language.
arXiv Detail & Related papers (2022-03-11T02:37:35Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
We consider the impact of the training set and its structure on the quality of the long-term prediction.
We show how an informed design of the training set, based on invariants of the system and the structure of the underlying attractor, significantly improves the resulting models.
arXiv Detail & Related papers (2021-12-15T20:09:20Z) - Relational VAE: A Continuous Latent Variable Model for Graph Structured
Data [0.0]
We show applications on the problem of structured probability density modeling for simulated and real wind farm monitoring data.
We release the source code, along with the simulated datasets.
arXiv Detail & Related papers (2021-06-30T13:24:27Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
Simulation-based inference enables learning the parameters of a model even when its likelihood cannot be computed in practice.
One class of methods uses data simulated with different parameters to infer an amortized estimator for the likelihood-to-evidence ratio.
We show that this approach can be formulated in terms of mutual information between model parameters and simulated data.
arXiv Detail & Related papers (2021-06-03T12:59:16Z) - Model-based Policy Optimization with Unsupervised Model Adaptation [37.09948645461043]
We investigate how to bridge the gap between real and simulated data due to inaccurate model estimation for better policy optimization.
We propose a novel model-based reinforcement learning framework AMPO, which introduces unsupervised model adaptation.
Our approach achieves state-of-the-art performance in terms of sample efficiency on a range of continuous control benchmark tasks.
arXiv Detail & Related papers (2020-10-19T14:19:42Z) - From Static to Dynamic Node Embeddings [61.58641072424504]
We introduce a general framework for leveraging graph stream data for temporal prediction-based applications.
Our proposed framework includes novel methods for learning an appropriate graph time-series representation.
We find that the top-3 temporal models are always those that leverage the new $epsilon$-graph time-series representation.
arXiv Detail & Related papers (2020-09-21T16:48:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.