論文の概要: EPR-Net: Constructing non-equilibrium potential landscape via a variational force projection formulation
- arxiv url: http://arxiv.org/abs/2301.01946v3
- Date: Tue, 9 Apr 2024 16:34:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-10 20:45:54.825400
- Title: EPR-Net: Constructing non-equilibrium potential landscape via a variational force projection formulation
- Title(参考訳): EPR-Net: 変動力投影式による非平衡ポテンシャル景観の構築
- Authors: Yue Zhao, Wei Zhang, Tiejun Li,
- Abstract要約: 本稿では,新しい効果的なディープラーニング手法であるEPR-Netを提案する。
これは生物物理学における重要な課題に取り組み、高次元の非平衡定常系の潜在的景観を構築する。
EPR-Netは生物物理学における多様な景観構築問題に対して有望な解決法であることを示す。
- 参考スコア(独自算出の注目度): 8.925320678286004
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present EPR-Net, a novel and effective deep learning approach that tackles a crucial challenge in biophysics: constructing potential landscapes for high-dimensional non-equilibrium steady-state (NESS) systems. EPR-Net leverages a nice mathematical fact that the desired negative potential gradient is simply the orthogonal projection of the driving force of the underlying dynamics in a weighted inner-product space. Remarkably, our loss function has an intimate connection with the steady entropy production rate (EPR), enabling simultaneous landscape construction and EPR estimation. We introduce an enhanced learning strategy for systems with small noise, and extend our framework to include dimensionality reduction and state-dependent diffusion coefficient case in a unified fashion. Comparative evaluations on benchmark problems demonstrate the superior accuracy, effectiveness, and robustness of EPR-Net compared to existing methods. We apply our approach to challenging biophysical problems, such as an 8D limit cycle and a 52D multi-stability problem, which provide accurate solutions and interesting insights on constructed landscapes. With its versatility and power, EPR-Net offers a promising solution for diverse landscape construction problems in biophysics.
- Abstract(参考訳): EPR-Netは,高次元非平衡定常状態(NESS)システムのための潜在的景観の構築という,生物物理学における重要な課題に取り組む,新しく効果的なディープラーニングアプローチである。
EPR-Net は、所望の負のポテンシャル勾配が、重み付き内積空間における基礎ダイナミクスの駆動力の直交射影であるという良い数学的事実を利用する。
我々の損失関数は、安定したエントロピー生成率(EPR)と密接な関係を持ち、ランドスケープ構築とEPR推定を同時に行うことができる。
小型の雑音を持つシステムに対する学習戦略を改良し,次元の低減と状態依存拡散係数のケースを統一的に含めるようにフレームワークを拡張した。
ベンチマーク問題に対する評価は,従来の手法と比較して,EPR-Netの精度,有効性,堅牢性に優れていた。
我々は,8次元の制限サイクルや52次元の多安定問題など,生物物理学的な問題へのアプローチを適用し,正確な解法と造園景観の興味深い洞察を提供する。
EPR-Netはその汎用性と力により、生物物理学における多様な景観構築問題に対する有望な解決策を提供する。
関連論文リスト
- Towards Autonomous Experimentation: Bayesian Optimization over Problem Formulation Space for Accelerated Alloy Development [0.31457219084519]
問題定式化空間上のベイズ最適化を利用して最適な設計定式化を同定する新しい枠組みを提案する。
ガスタービンエンジンブレード応用を目的としたMo-Nb-Ti-V-W合金系におけるインサイリコケーススタディにより,本手法の有効性を実証した。
今後は、人間のフィードバックを取り入れて、実世界の実験環境におけるシステムの適応性をさらに強化していく予定だ。
論文 参考訳(メタデータ) (2025-02-09T01:05:58Z) - Advancing Generalization in PINNs through Latent-Space Representations [71.86401914779019]
物理インフォームドニューラルネットワーク(PINN)は、偏微分方程式(PDE)によって支配される力学系のモデリングにおいて大きな進歩を遂げた。
本稿では,多種多様なPDE構成を効果的に一般化する物理インフォームドニューラルPDE解法PIDOを提案する。
PIDOは1次元合成方程式と2次元ナビエ・ストークス方程式を含む様々なベンチマークで検証する。
論文 参考訳(メタデータ) (2024-11-28T13:16:20Z) - Model-free learning of probability flows: Elucidating the nonequilibrium dynamics of flocking [15.238808518078567]
位相空間の高次元性は、エントロピー生成速度を推定できない伝統的な計算技術を示す。
慣性系に対する確率電流とEPRの2つの局所的定義との間に新しい物理的関係を導出する。
この結果から,アライメントと揺らぎの相互作用が順番を動的に生成・消滅させるため,群れの空間的界面でエントロピーが消費されることが示唆された。
論文 参考訳(メタデータ) (2024-11-21T17:08:06Z) - Mitigating Learning Complexity in Physics and Equality Constrained
Artificial Neural Networks [0.9137554315375919]
偏微分方程式(PDE)の解を学ぶために物理インフォームドニューラルネットワーク(PINN)が提案されている。
PINNでは、利害関係のPDEの残留形態とその境界条件は、軟罰として複合目的関数にまとめられる。
本稿では,この目的関数を定式化する方法が,異なる種類のPDEに適用した場合のPINNアプローチにおける厳しい制約の源であることを示す。
論文 参考訳(メタデータ) (2022-06-19T04:12:01Z) - Multi-Objective Constrained Optimization for Energy Applications via
Tree Ensembles [55.23285485923913]
エネルギーシステムの最適化問題は、強い非線形系の挙動と複数の競合する目的のために複雑である。
場合によっては、提案された最適解は、物理的性質や安全クリティカルな操作条件に関連する明示的な入力制約に従う必要がある。
本稿では,ブラックボックス問題に対する制約付き多目的最適化のためのツリーアンサンブルを用いた新しいデータ駆動戦略を提案する。
論文 参考訳(メタデータ) (2021-11-04T20:18:55Z) - Learning High-Dimensional Distributions with Latent Neural Fokker-Planck
Kernels [67.81799703916563]
低次元潜在空間におけるフォッカー・プランク方程式の解法として問題を定式化する新しい手法を導入する。
提案モデルでは,潜在分散モーフィング,ジェネレータ,パラメータ化Fokker-Planckカーネル関数からなる。
論文 参考訳(メタデータ) (2021-05-10T17:42:01Z) - A Hamiltonian Monte Carlo Method for Probabilistic Adversarial Attack
and Learning [122.49765136434353]
本稿では,HMCAM (Acumulated Momentum) を用いたハミルトニアンモンテカルロ法を提案する。
また, 対数的対数的対数的学習(Contrastive Adversarial Training, CAT)と呼ばれる新たな生成法を提案し, 対数的例の平衡分布にアプローチする。
いくつかの自然画像データセットと実用システムに関する定量的および定性的な解析により、提案アルゴリズムの優位性が確認された。
論文 参考訳(メタデータ) (2020-10-15T16:07:26Z) - Robust Reinforcement Learning with Wasserstein Constraint [49.86490922809473]
最適なロバストなポリシーの存在を示し、摂動に対する感度分析を行い、新しいロバストな学習アルゴリズムを設計する。
提案アルゴリズムの有効性はCart-Pole環境で検証する。
論文 参考訳(メタデータ) (2020-06-01T13:48:59Z) - Targeted free energy estimation via learned mappings [66.20146549150475]
自由エネルギー摂動 (FEP) は60年以上前にズワンツィヒによって自由エネルギー差を推定する方法として提案された。
FEPは、分布間の十分な重複の必要性という厳しい制限に悩まされている。
目標自由エネルギー摂動(Targeted Free Energy Perturbation)と呼ばれるこの問題を緩和するための1つの戦略は、オーバーラップを増やすために構成空間の高次元マッピングを使用する。
論文 参考訳(メタデータ) (2020-02-12T11:10:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。