論文の概要: Learning to Control and Coordinate Mixed Traffic Through Robot Vehicles at Complex and Unsignalized Intersections
- arxiv url: http://arxiv.org/abs/2301.05294v3
- Date: Wed, 16 Oct 2024 01:58:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-17 13:38:18.651894
- Title: Learning to Control and Coordinate Mixed Traffic Through Robot Vehicles at Complex and Unsignalized Intersections
- Title(参考訳): 複雑・不特定区間におけるロボットによる混在交通の制御と調整の学習
- Authors: Dawei Wang, Weizi Li, Lei Zhu, Jia Pan,
- Abstract要約: 実世界の複雑な交差点における混在トラフィックの制御と調整のための分散型マルチエージェント強化学習手法を提案する。
特に,5%のRVを使用すれば,1時間あたり700台の車両の実際の交通需要の下で,複雑な交差点内での渋滞発生を防止できることを示す。
また,ブラックアウトイベントや突然のRVパーセンテージ低下に対して頑健であり,汎用性も良好である。
- 参考スコア(独自算出の注目度): 33.0086333735748
- License:
- Abstract: Intersections are essential road infrastructures for traffic in modern metropolises. However, they can also be the bottleneck of traffic flows as a result of traffic incidents or the absence of traffic coordination mechanisms such as traffic lights. Recently, various control and coordination mechanisms that are beyond traditional control methods have been proposed to improve the efficiency of intersection traffic. Amongst these methods, the control of foreseeable mixed traffic that consists of human-driven vehicles (HVs) and robot vehicles (RVs) has emerged. In this project, we propose a decentralized multi-agent reinforcement learning approach for the control and coordination of mixed traffic at real-world, complex intersections--a topic that has not been previously explored. Comprehensive experiments are conducted to show the effectiveness of our approach. In particular, we show that using 5% RVs, we can prevent congestion formation inside a complex intersection under the actual traffic demand of 700 vehicles per hour. In contrast, without RVs, congestion starts to develop when the traffic demand reaches as low as 200 vehicles per hour. When there exist more than 60% RVs in traffic, our method starts to achieve comparable or even better performance to traffic signals on the average waiting time of all vehicles at the intersection. Our method is also robust against both blackout events and sudden RV percentage drops, and enjoys excellent generalizablility, which is illustrated by its successful deployment in two unseen intersections.
- Abstract(参考訳): インターセクションは、現代のメトロポリスの交通に不可欠な道路インフラである。
しかし、交通事故や信号機のような交通調整機構の欠如により、交通流のボトルネックとなることもある。
近年,交差点交通の効率化を図るため,従来の制御手法を超える様々な制御・調整機構が提案されている。
これらの手法の中で,人間駆動車(HV)とロボット車(RV)からなる予測可能な混在交通の制御が出現している。
本稿では,実世界の複雑な交差点における混在トラフィックの制御と協調のための分散型マルチエージェント強化学習手法を提案する。
本手法の有効性を示すための総合的な実験を行った。
特に,5%のRVを使用すれば,1時間あたり700台の車両の実際の交通需要の下で,複雑な交差点内での渋滞発生を防止できることを示す。
対照的に、RVがなければ、交通需要が1時間に200台の車両に達すると渋滞が始まります。
トラフィックに60%以上のRVが存在する場合、交差点の全車両の平均待ち時間において、我々の手法は信号に匹敵する、あるいはさらに優れた性能を達成し始める。
また,ブラックアウトイベントや突然のRVパーセンテージの低下に対して頑健であり,2つの交差点での展開が成功していることを示す。
関連論文リスト
- Agent-Agnostic Centralized Training for Decentralized Multi-Agent Cooperative Driving [17.659812774579756]
本研究では,自律走行車における分散型協調運転ポリシーを学習する非対称アクター・批判モデルを提案する。
マスキングを用いたアテンションニューラルネットワークを用いることで,実世界の交通動態と部分観測可能性の効率よく管理できる。
論文 参考訳(メタデータ) (2024-03-18T16:13:02Z) - DenseLight: Efficient Control for Large-scale Traffic Signals with Dense
Feedback [109.84667902348498]
交通信号制御(TSC)は、道路網における車両の平均走行時間を短縮することを目的としている。
従来のTSC手法は、深い強化学習を利用して制御ポリシーを探索する。
DenseLightは、不偏報酬関数を用いてポリシーの有効性をフィードバックする新しいRTLベースのTSC手法である。
論文 参考訳(メタデータ) (2023-06-13T05:58:57Z) - iPLAN: Intent-Aware Planning in Heterogeneous Traffic via Distributed
Multi-Agent Reinforcement Learning [57.24340061741223]
本稿では,高密度および不均一な交通シナリオにおける軌跡や意図を予測できる分散マルチエージェント強化学習(MARL)アルゴリズムを提案する。
インテント対応プランニングのアプローチであるiPLANにより、エージェントは近くのドライバーの意図をローカルな観察からのみ推測できる。
論文 参考訳(メタデータ) (2023-06-09T20:12:02Z) - HumanLight: Incentivizing Ridesharing via Human-centric Deep
Reinforcement Learning in Traffic Signal Control [3.402002554852499]
本稿では,新しい分散適応型信号制御アルゴリズムHumanLightを提案する。
提案する制御器は,人体レベルでの輸送にインスパイアされた圧力の概念を組み込んだ報酬関数を組み込んだ強化学習に基づいて構築されている。
HOVの通勤者に1回の乗車で旅行時間節約を施すことで、HumanLightはグリーンタイムの均等な割り当てを実現している。
論文 参考訳(メタデータ) (2023-04-05T17:42:30Z) - Unified Automatic Control of Vehicular Systems with Reinforcement
Learning [64.63619662693068]
本稿では,車載マイクロシミュレーションの合理化手法について述べる。
最小限の手動設計で高性能な制御戦略を発見する。
この研究は、波動緩和、交通信号、ランプ計測に類似した多くの創発的挙動を明らかにしている。
論文 参考訳(メタデータ) (2022-07-30T16:23:45Z) - Learning energy-efficient driving behaviors by imitating experts [75.12960180185105]
本稿では,コミュニケーション・センシングにおける制御戦略と現実的限界のギャップを埋める上で,模倣学習が果たす役割について考察する。
擬似学習は、車両の5%に採用されれば、局地的な観測のみを用いて、交通条件の異なるネットワークのエネルギー効率を15%向上させる政策を導出できることを示す。
論文 参考訳(メタデータ) (2022-06-28T17:08:31Z) - COOPERNAUT: End-to-End Driving with Cooperative Perception for Networked
Vehicles [54.61668577827041]
本稿では,車間認識を用いたエンドツーエンド学習モデルであるCOOPERNAUTを紹介する。
われわれのAutoCastSim実験は、我々の協調知覚駆動モデルが平均成功率を40%向上させることを示唆している。
論文 参考訳(メタデータ) (2022-05-04T17:55:12Z) - Integrated Decision and Control at Multi-Lane Intersections with Mixed
Traffic Flow [6.233422723925688]
本稿では,混在交通流を伴う複雑な交差点を扱うための学習に基づくアルゴリズムを提案する。
まず、学習過程における緑と赤の異なる速度モデルについて検討し、有限状態マシンを用いて異なるモードの光変換を扱う。
次に, 車両, 信号機, 歩行者, 自転車にそれぞれ異なる種類の距離制約を設計し, 制約された最適制御問題をフォーミュレートする。
論文 参考訳(メタデータ) (2021-08-30T07:55:32Z) - Courteous Behavior of Automated Vehicles at Unsignalized Intersections
via Reinforcement Learning [30.00761722505295]
深層強化学習を用いた混在交通状況における交差点における交通流の最適化手法を提案する。
我々の強化学習エージェントは、信号のない交差点で接続された自動運転車が道路の権利を放棄し、交通の流れを最適化するために他の車両に利する、集中型制御器のポリシーを学習する。
論文 参考訳(メタデータ) (2021-06-11T13:16:48Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
交差点をナビゲートすることは、自動運転車にとって大きな課題の1つです。
本研究では,交通標識のみが提供された交差点をナビゲート可能なシステムの実装に着目する。
本研究では,時間ステップ毎に加速度と操舵角を予測するためのニューラルネットワークの訓練に用いる,モデルフリーの連続学習アルゴリズムを用いたマルチエージェントシステムを提案する。
論文 参考訳(メタデータ) (2021-04-28T07:54:40Z) - Scalable Multiagent Driving Policies For Reducing Traffic Congestion [32.08636346620938]
過去の研究では、AVと人間駆動車両の両方で小規模の混合交通シナリオでは、制御されたマルチエージェント運転ポリシーを実行する少数のAVが混雑を緩和できることを示しています。
本稿では,既存のアプローチをスケールアップし,より複雑なシナリオにおいてavのための新しいマルチエージェント駆動ポリシを開発する。
論文 参考訳(メタデータ) (2021-02-26T21:29:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。