論文の概要: Cooperative Cruising: Reinforcement Learning-Based Time-Headway Control for Increased Traffic Efficiency
- arxiv url: http://arxiv.org/abs/2412.02520v3
- Date: Sun, 02 Feb 2025 08:49:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 14:55:05.589610
- Title: Cooperative Cruising: Reinforcement Learning-Based Time-Headway Control for Increased Traffic Efficiency
- Title(参考訳): 協調クルーズ: 交通効率向上のための強化学習に基づく時空制御
- Authors: Yaron Veksler, Sharon Hornstein, Han Wang, Maria Laura Delle Monache, Daniel Urieli,
- Abstract要約: 本稿では,高速道路の交通効率を人的交通と比較して初めて向上させる新しいAIシステムを提案する。
私たちのアプローチの核心は、自動車両にタイムヘッドを通信する強化学習ベースのコントローラです。
- 参考スコア(独自算出の注目度): 4.982603129041808
- License:
- Abstract: The proliferation of connected automated vehicles represents an unprecedented opportunity for improving driving efficiency and alleviating traffic congestion. However, existing research fails to address realistic multi-lane highway scenarios without assuming connectivity, perception, and control capabilities that are typically unavailable in current vehicles. This paper proposes a novel AI system that is the first to improve highway traffic efficiency compared with human-like traffic in realistic, simulated multi-lane scenarios, while relying on existing connectivity, perception, and control capabilities. At the core of our approach is a reinforcement learning based controller that dynamically communicates time-headways to automated vehicles near bottlenecks based on real-time traffic conditions. These desired time-headways are then used by adaptive cruise control (ACC) systems to adjust their following distance. By (i) integrating existing traffic estimation technology and low-bandwidth vehicle-to-infrastructure connectivity, (ii) leveraging safety-certified ACC systems, and (iii) targeting localized bottleneck challenges that can be addressed independently in different locations, we propose a potentially practical, safe, and scalable system that can positively impact numerous road users.
- Abstract(参考訳): 連結自動車の普及は、運転効率を向上し、交通渋滞を緩和する前例のない機会である。
しかし、既存の研究は、現在の車両では利用できない接続性、知覚、制御能力を前提にすることなく、現実的なマルチレーンハイウェイのシナリオに対処することができない。
本稿では,既存のコネクティビティ,知覚,制御機能に依存しつつ,現実的,シミュレートされたマルチレーンシナリオにおいて,高速道路交通の効率を改善するための新しいAIシステムを提案する。
当社のアプローチの核心は、リアルタイムの交通状況に基づいたボトルネックに近い自動車両に動的にタイムヘッドを通信する強化学習ベースのコントローラである。
これらの所望の時間ヘッドウェイは、アダプティブ・クルーズ・コントロール(ACC)システムによって、次の距離を調整するために使用される。
周辺
一 既存の交通量推定技術と低帯域の車両からインフラへの接続性の統合。
二 安全認証ACCシステムの利用、及び
3) 異なる場所で個別に対処できる局所的ボトルネック問題を対象として,多くの道路利用者に肯定的な影響を与える,実用的で安全かつスケーラブルなシステムを提案する。
関連論文リスト
- Agent-Agnostic Centralized Training for Decentralized Multi-Agent Cooperative Driving [17.659812774579756]
本研究では,自律走行車における分散型協調運転ポリシーを学習する非対称アクター・批判モデルを提案する。
マスキングを用いたアテンションニューラルネットワークを用いることで,実世界の交通動態と部分観測可能性の効率よく管理できる。
論文 参考訳(メタデータ) (2024-03-18T16:13:02Z) - A Holistic Framework Towards Vision-based Traffic Signal Control with
Microscopic Simulation [53.39174966020085]
交通信号制御(TSC)は交通渋滞を低減し、交通の流れを円滑にし、アイドリング時間を短縮し、CO2排出量を減らすために重要である。
本研究では,道路交通の流れを視覚的観察によって調節するTSCのコンピュータビジョンアプローチについて検討する。
我々は、視覚ベースのTSCとそのベンチマークに向けて、TrafficDojoと呼ばれる総合的なトラフィックシミュレーションフレームワークを導入する。
論文 参考訳(メタデータ) (2024-03-11T16:42:29Z) - DenseLight: Efficient Control for Large-scale Traffic Signals with Dense
Feedback [109.84667902348498]
交通信号制御(TSC)は、道路網における車両の平均走行時間を短縮することを目的としている。
従来のTSC手法は、深い強化学習を利用して制御ポリシーを探索する。
DenseLightは、不偏報酬関数を用いてポリシーの有効性をフィードバックする新しいRTLベースのTSC手法である。
論文 参考訳(メタデータ) (2023-06-13T05:58:57Z) - Reinforcement Learning based Cyberattack Model for Adaptive Traffic
Signal Controller in Connected Transportation Systems [61.39400591328625]
接続輸送システムにおいて、適応交通信号制御装置(ATSC)は、車両から受信したリアルタイム車両軌跡データを利用して、グリーンタイムを規制する。
この無線接続されたATSCはサイバー攻撃面を増やし、その脆弱性を様々なサイバー攻撃モードに拡大する。
そのようなモードの1つは、攻撃者がネットワーク内で偽の車両を作成する「シビル」攻撃である。
RLエージェントは、シビル車噴射の最適速度を学習し、アプローチの混雑を生じさせるように訓練される
論文 参考訳(メタデータ) (2022-10-31T20:12:17Z) - Learning energy-efficient driving behaviors by imitating experts [75.12960180185105]
本稿では,コミュニケーション・センシングにおける制御戦略と現実的限界のギャップを埋める上で,模倣学習が果たす役割について考察する。
擬似学習は、車両の5%に採用されれば、局地的な観測のみを用いて、交通条件の異なるネットワークのエネルギー効率を15%向上させる政策を導出できることを示す。
論文 参考訳(メタデータ) (2022-06-28T17:08:31Z) - Traffic Management of Autonomous Vehicles using Policy Based Deep
Reinforcement Learning and Intelligent Routing [0.26249027950824505]
本稿では,交差点の混雑状況に応じて交通信号を調整するDRLに基づく信号制御システムを提案する。
交差点の後方の道路での渋滞に対処するため,道路ネットワーク上で車両のバランスをとるために再ルート手法を用いた。
論文 参考訳(メタデータ) (2022-06-28T02:46:20Z) - AI-aided Traffic Control Scheme for M2M Communications in the Internet
of Vehicles [61.21359293642559]
交通のダイナミクスと異なるIoVアプリケーションの異種要求は、既存のほとんどの研究では考慮されていない。
本稿では,ハイブリッド交通制御方式とPPO法を併用して検討する。
論文 参考訳(メタデータ) (2022-03-05T10:54:05Z) - Learning to Help Emergency Vehicles Arrive Faster: A Cooperative
Vehicle-Road Scheduling Approach [24.505687255063986]
車両中心のスケジューリングアプローチは、緊急車両の最適経路を推奨する。
道路中心のスケジューリングアプローチは、交通状況を改善し、EVが交差点を通過するための優先度を高めることを目的としている。
本稿では,リアルタイム経路計画モジュールと協調交通信号制御モジュールを含む協調型VehIcle-roaDスケジューリング手法であるLEVIDを提案する。
論文 参考訳(メタデータ) (2022-02-20T10:25:15Z) - Courteous Behavior of Automated Vehicles at Unsignalized Intersections
via Reinforcement Learning [30.00761722505295]
深層強化学習を用いた混在交通状況における交差点における交通流の最適化手法を提案する。
我々の強化学習エージェントは、信号のない交差点で接続された自動運転車が道路の権利を放棄し、交通の流れを最適化するために他の車両に利する、集中型制御器のポリシーを学習する。
論文 参考訳(メタデータ) (2021-06-11T13:16:48Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
交差点をナビゲートすることは、自動運転車にとって大きな課題の1つです。
本研究では,交通標識のみが提供された交差点をナビゲート可能なシステムの実装に着目する。
本研究では,時間ステップ毎に加速度と操舵角を予測するためのニューラルネットワークの訓練に用いる,モデルフリーの連続学習アルゴリズムを用いたマルチエージェントシステムを提案する。
論文 参考訳(メタデータ) (2021-04-28T07:54:40Z) - D-ACC: Dynamic Adaptive Cruise Control for Highways with Ramps Based on
Deep Q-Learning [17.412117389855226]
深層強化学習に基づく動的適応型クルーズ制御システム(D-ACC)を提案する。
D-ACCは、ランプのあるハイウェイセグメントにおける最先端のインテリジェントACCシステムと比較して、トラフィックフローを最大70%改善する。
論文 参考訳(メタデータ) (2020-06-02T06:28:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。