論文の概要: Approximation of the Nearest Classical-Classical State to a Quantum
State
- arxiv url: http://arxiv.org/abs/2301.09316v1
- Date: Mon, 23 Jan 2023 08:26:17 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-24 14:03:00.323205
- Title: Approximation of the Nearest Classical-Classical State to a Quantum
State
- Title(参考訳): 量子状態への最も近い古典古典的状態の近似
- Authors: BingZe Lu, Matthew. M Lin, Yuchen Shu
- Abstract要約: 計算における革命的なステップは量子性または量子相関によって駆動される。
量子性の正確な定量化はNPハード問題であり、近似する代替手法を考える。
実測値と数値結果により, 目的値が流れに沿って減少することを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The capacity of quantum computation exceeds that of classical computers. A
revolutionary step in computation is driven by quantumness or quantum
correlations, which are permanent in entanglements but often in separable
states; therefore, quantifying the quantumness of a state in a quantum system
is an important task. The exact quantification of quantumness is an NP-hard
problem; thus, we consider alternative approaches to approximate it. In this
paper, we take the Frobenius norm to establish an objective function and
propose a gradient-driven descent flow on Stiefel manifolds to determine the
quantity. We show that the objective value decreases along the flow by proofs
and numerical results. Besides, the method guarantees the ability to decompose
quantum states into tensor products of certain structures and maintain basic
quantum assumptions. Finally, the numerical results eventually confirm the
applicability of our method in real-world settings.
- Abstract(参考訳): 量子計算の能力は古典的コンピュータの能力を超える。
計算における革命的なステップは量子性(quantumness)または量子相関(quantum correlations)によって駆動されるが、これはエンタングルメントにおいて永続的であるが、しばしば分離可能な状態にあるため、量子系の状態の量子性を定量化することが重要な課題である。
量子性の正確な定量化はNPハード問題であり、近似する代替手法を考える。
本稿では,フロベニウスノルムを用いて目的関数を定式化し,スティフェル多様体上の勾配駆動降下流を提案して量を決定する。
目的値が証明と数値結果によってフローに沿って減少することを示す。
さらに、この方法は量子状態を特定の構造のテンソル積に分解し、基本的な量子仮定を維持する能力を保証する。
最後に,実環境における本手法の適用性を確認した。
関連論文リスト
- Quantum Machine Learning: from physics to software engineering [58.720142291102135]
古典的な機械学習アプローチが量子コンピュータの設備改善にどのように役立つかを示す。
量子アルゴリズムと量子コンピュータは、古典的な機械学習タスクを解くのにどのように役立つかについて議論する。
論文 参考訳(メタデータ) (2023-01-04T23:37:45Z) - Quantum advantage in temporally flat measurement-based quantum
computation [3.6095388702618414]
本研究では, 計測に基づく量子計算の効率性について検討した。
非適応MBQCを用いた決定論的評価が可能なブール関数群を同定する。
論文 参考訳(メタデータ) (2022-12-07T14:34:56Z) - Fundamental limitations on optimization in variational quantum
algorithms [7.165356904023871]
そのような短期量子アプリケーションを確立するための主要なパラダイムは、変分量子アルゴリズム(VQA)である。
このようなランダム回路の幅広いクラスにおいて、コスト関数の変動範囲は、高い確率で量子ビット数で指数関数的に消えることを示す。
この結果は、勾配に基づく最適化と勾配のない最適化の制約を自然に統一し、VQAのトレーニングランドスケープに余分な厳しい制約を明らかにすることができる。
論文 参考訳(メタデータ) (2022-05-10T17:14:57Z) - Theory of Quantum Generative Learning Models with Maximum Mean
Discrepancy [67.02951777522547]
量子回路ボルンマシン(QCBM)と量子生成逆ネットワーク(QGAN)の学習可能性について検討する。
まず、QCBMの一般化能力を解析し、量子デバイスがターゲット分布に直接アクセスできる際の優位性を同定する。
次に、QGANの一般化誤差境界が、採用されるAnsatz、クォーディットの数、入力状態に依存することを示す。
論文 参考訳(メタデータ) (2022-05-10T08:05:59Z) - Gaussian initializations help deep variational quantum circuits escape
from the barren plateau [87.04438831673063]
近年、変分量子回路は量子シミュレーションや量子機械学習に広く用いられている。
しかし、ランダムな構造を持つ量子回路は、回路深さと量子ビット数に関して指数関数的に消える勾配のため、トレーニング容易性が低い。
この結果、ディープ量子回路は実用的なタスクでは実現できないという一般的な信念が導かれる。
論文 参考訳(メタデータ) (2022-03-17T15:06:40Z) - On exploring practical potentials of quantum auto-encoder with
advantages [92.19792304214303]
量子オートエンコーダ(QAE)は、量子物理学で遭遇する次元の呪いを和らげるための強力なツールである。
我々はQAEを用いて固有値を効率的に計算し、高次元量子状態の対応する固有ベクトルを作成できることを証明した。
低ランク状態の忠実度推定,量子ギブス状態準備,量子メトロジーの課題を解決するために,QAEに基づく効果的な3つの学習プロトコルを考案した。
論文 参考訳(メタデータ) (2021-06-29T14:01:40Z) - Towards understanding the power of quantum kernels in the NISQ era [79.8341515283403]
量子カーネルの利点は,大規模データセット,計測回数の少ないもの,システムノイズなどにおいて消失することを示した。
我々の研究は、NISQデバイス上で量子優位性を得るための先進量子カーネルの探索に関する理論的ガイダンスを提供する。
論文 参考訳(メタデータ) (2021-03-31T02:41:36Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
線形および非線形の層をユニタリ量子ゲートとして表現する方法を示し、量子モデルの基本的な励起を粒子として解釈する。
ニューラルネットワークの研究のための新しい視点と技術を開くことに加えて、量子定式化は光量子コンピューティングに適している。
論文 参考訳(メタデータ) (2021-03-08T17:24:29Z) - VSQL: Variational Shadow Quantum Learning for Classification [6.90132007891849]
我々は,変分影量子学習と呼ぶ教師付き量子学習のための新しいハイブリッド量子古典フレームワークを提案する。
まず,変分影量子回路を用いて古典的特徴を畳み込みで抽出し,完全連結ニューラルネットワークを用いて分類タスクを完了させる。
本手法は,パラメータ数を著しく削減し,量子回路トレーニングをより容易に行うことができることを示す。
論文 参考訳(メタデータ) (2020-12-15T13:51:01Z) - Variational Quantum Eigensolver for Frustrated Quantum Systems [0.0]
変分量子固有解法(VQE)は、量子ハミルトニアンによって指定されたエネルギーランドスケープにおける大域最小値を決定するように設計されている。
本稿では、1次元のフェルミオン連鎖を記述するハバード様モデルに対するVQE手法の性能について考察する。
また、ハミルトニアンに対するバレンプラトー現象の研究を行い、この効果の重大性はフェルミオンの量子ビットへの符号化に依存することを示した。
論文 参考訳(メタデータ) (2020-05-01T18:00:01Z) - Finding Quantum Critical Points with Neural-Network Quantum States [0.0]
本稿では,ニューラルネットワーク量子状態を用いた量子イジングモデルの量子臨界点探索手法を提案する。
我々は、本質的に制限されたボルツマンマシン、トランスファーラーニング、教師なし学習を解析的に構築した。
論文 参考訳(メタデータ) (2020-02-07T04:39:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。