論文の概要: A New Approach to Learning Linear Dynamical Systems
- arxiv url: http://arxiv.org/abs/2301.09519v1
- Date: Mon, 23 Jan 2023 16:07:57 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-24 13:08:40.070721
- Title: A New Approach to Learning Linear Dynamical Systems
- Title(参考訳): 線形力学系の学習への新しいアプローチ
- Authors: Ainesh Bakshi, Allen Liu, Ankur Moitra and Morris Yau
- Abstract要約: 本稿では,線形力学系を時間軌道からシステムパラメータの誤差まで,初めて学習するアルゴリズムを提案する。
本アルゴリズムはモーメント推定器を用いて,動的に抽出できるパラメータを直接推定する。
- 参考スコア(独自算出の注目度): 19.47235707806519
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Linear dynamical systems are the foundational statistical model upon which
control theory is built. Both the celebrated Kalman filter and the linear
quadratic regulator require knowledge of the system dynamics to provide
analytic guarantees. Naturally, learning the dynamics of a linear dynamical
system from linear measurements has been intensively studied since Rudolph
Kalman's pioneering work in the 1960's. Towards these ends, we provide the
first polynomial time algorithm for learning a linear dynamical system from a
polynomial length trajectory up to polynomial error in the system parameters
under essentially minimal assumptions: observability, controllability, and
marginal stability. Our algorithm is built on a method of moments estimator to
directly estimate Markov parameters from which the dynamics can be extracted.
Furthermore, we provide statistical lower bounds when our observability and
controllability assumptions are violated.
- Abstract(参考訳): 線形力学系は、制御理論が構築される基礎統計モデルである。
有名なカルマンフィルタと線形二次レギュレータは解析的保証を提供するために系の力学の知識を必要とする。
自然に、線形計測から線形力学系の力学を学ぶことは、1960年代のルドルフ・カルマンの先駆的研究以来、集中的に研究されてきた。
そこで本研究では, 線形力学系を, 可観測性, 制御性, 限界安定性といった最小仮定の下で多項式長軌道から多項式誤差まで学習する最初の多項式時間アルゴリズムを提案する。
本アルゴリズムはモーメント推定器を用いて,動的に抽出できるマルコフパラメータを直接推定する。
さらに,可観測性と制御可能性の仮定に違反した場合に統計的に下限を与える。
関連論文リスト
- Learning Controlled Stochastic Differential Equations [61.82896036131116]
本研究では,非一様拡散を伴う連続多次元非線形微分方程式のドリフト係数と拡散係数の両方を推定する新しい手法を提案する。
我々は、(L2)、(Linfty)の有限サンプル境界や、係数の正則性に適応する学習率を持つリスクメトリクスを含む、強力な理論的保証を提供する。
当社のメソッドはオープンソースPythonライブラリとして利用可能です。
論文 参考訳(メタデータ) (2024-11-04T11:09:58Z) - Data-Driven Control with Inherent Lyapunov Stability [3.695480271934742]
本研究では,非線形力学モデルと安定化制御器のパラメトリック表現をデータから共同学習する手法として,インヒーレント・リャプノフ安定度制御(CoILS)を提案する。
新たな構成によって保証される学習力学の安定化性に加えて、学習した制御器は学習力学の忠実性に関する特定の仮定の下で真の力学を安定化することを示す。
論文 参考訳(メタデータ) (2023-03-06T14:21:42Z) - Time varying regression with hidden linear dynamics [74.9914602730208]
線形力学系に従って未知のパラメータが進化することを前提とした時間変化線形回帰モデルを再検討する。
反対に、基礎となる力学が安定である場合、このモデルのパラメータは2つの通常の最小二乗推定と組み合わせることで、データから推定できることが示される。
論文 参考訳(メタデータ) (2021-12-29T23:37:06Z) - Learning over All Stabilizing Nonlinear Controllers for a
Partially-Observed Linear System [4.3012765978447565]
線形力学系に対する非線形出力フィードバックコントローラのパラメータ化を提案する。
提案手法は, 制約を満たすことなく, 部分的に観測可能な線形力学系の閉ループ安定性を保証する。
論文 参考訳(メタデータ) (2021-12-08T10:43:47Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
現代の力学系はますます非線形で複雑なものになりつつある。
予測と制御のためのコンパクトで包括的な表現でこれらのシステムをモデル化するフレームワークが必要である。
本手法は,教師付き学習手法を用いてこれらの基礎関数を学習する。
論文 参考訳(メタデータ) (2021-09-06T04:39:06Z) - Learning Unstable Dynamics with One Minute of Data: A
Differentiation-based Gaussian Process Approach [47.045588297201434]
ガウス過程の微分可能性を利用して、真の連続力学の状態依存線形化近似を作成する方法を示す。
9次元セグウェイのような不安定なシステムのシステムダイナミクスを反復的に学習することで、アプローチを検証する。
論文 参考訳(メタデータ) (2021-03-08T05:08:47Z) - Online Stochastic Gradient Descent Learns Linear Dynamical Systems from
A Single Trajectory [1.52292571922932]
本研究では,システムを記述する未知の重み行列がブルノフスキー正則形式であれば,システムの未知の基底真理を効率的に推定できることを示した。
具体的には、具体的な境界を導出することにより、SGDは基底真理重みから任意の小さなフロベニウスノルム距離に期待して線型収束することを示す。
論文 参考訳(メタデータ) (2021-02-23T17:48:39Z) - Active Learning for Nonlinear System Identification with Guarantees [102.43355665393067]
状態遷移が既知の状態-作用対の特徴埋め込みに線形に依存する非線形力学系のクラスについて検討する。
そこで本稿では, トラジェクティブ・プランニング, トラジェクティブ・トラッキング, システムの再推定という3つのステップを繰り返すことで, この問題を解決するためのアクティブ・ラーニング・アプローチを提案する。
本手法は, 非線形力学系を標準線形回帰の統計速度と同様, パラメトリック速度で推定する。
論文 参考訳(メタデータ) (2020-06-18T04:54:11Z) - Adaptive Control and Regret Minimization in Linear Quadratic Gaussian
(LQG) Setting [91.43582419264763]
我々は不確実性に直面した楽観主義の原理に基づく新しい強化学習アルゴリズムLqgOptを提案する。
LqgOptはシステムのダイナミクスを効率的に探索し、モデルのパラメータを信頼区間まで推定し、最も楽観的なモデルのコントローラをデプロイする。
論文 参考訳(メタデータ) (2020-03-12T19:56:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。