論文の概要: Online Stochastic Gradient Descent Learns Linear Dynamical Systems from
A Single Trajectory
- arxiv url: http://arxiv.org/abs/2102.11822v1
- Date: Tue, 23 Feb 2021 17:48:39 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-25 02:38:10.522166
- Title: Online Stochastic Gradient Descent Learns Linear Dynamical Systems from
A Single Trajectory
- Title(参考訳): Online Stochastic Gradient Descentが単一軌道から線形ダイナミカルシステムを学ぶ
- Authors: Navid Reyhanian, Jarvis Haupt
- Abstract要約: 本研究では,システムを記述する未知の重み行列がブルノフスキー正則形式であれば,システムの未知の基底真理を効率的に推定できることを示した。
具体的には、具体的な境界を導出することにより、SGDは基底真理重みから任意の小さなフロベニウスノルム距離に期待して線型収束することを示す。
- 参考スコア(独自算出の注目度): 1.52292571922932
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work investigates the problem of estimating the weight matrices of a
stable time-invariant linear dynamical system from a single sequence of noisy
measurements. We show that if the unknown weight matrices describing the system
are in Brunovsky canonical form, we can efficiently estimate the ground truth
unknown matrices of the system from a linear system of equations formulated
based on the transfer function of the system, using both online and offline
stochastic gradient descent (SGD) methods. Specifically, by deriving concrete
complexity bounds, we show that SGD converges linearly in expectation to any
arbitrary small Frobenius norm distance from the ground truth weights. To the
best of our knowledge, ours is the first work to establish linear convergence
characteristics for online and offline gradient-based iterative methods for
weight matrix estimation in linear dynamical systems from a single trajectory.
Extensive numerical tests verify that the performance of the proposed methods
is consistent with our theory, and show their superior performance relative to
existing state of the art methods.
- Abstract(参考訳): 本研究では, 安定な時間不変線形力学系の重み行列を, ノイズ測定の単一シーケンスから推定する問題を検討する。
システムを記述する未知の重み行列がブルーノフスキー標準形式である場合、オンラインおよびオフライン確率勾配勾配(SGD)法を用いて、システムの伝達関数に基づいて定式化された方程式の線形系から、システムの基底真さ不明行列を効率的に推定できることを示す。
具体的には、具体的な複雑性境界を導出することにより、SGDは基底真理重みから任意の小さなフロベニウスノルム距離に期待して線型収束することを示す。
私たちの知る限りでは、オンラインおよびオフラインの勾配に基づく1つの軌道から線形力学系における重み行列推定のための線形収束特性を確立する最初の研究である。
提案手法の性能が我々の理論と整合していることを広範な数値テストで検証し、既存の手法と比較して優れた性能を示す。
関連論文リスト
- Learning Controlled Stochastic Differential Equations [61.82896036131116]
本研究では,非一様拡散を伴う連続多次元非線形微分方程式のドリフト係数と拡散係数の両方を推定する新しい手法を提案する。
我々は、(L2)、(Linfty)の有限サンプル境界や、係数の正則性に適応する学習率を持つリスクメトリクスを含む、強力な理論的保証を提供する。
当社のメソッドはオープンソースPythonライブラリとして利用可能です。
論文 参考訳(メタデータ) (2024-11-04T11:09:58Z) - Quantum Algorithms for Nonlinear Dynamics: Revisiting Carleman Linearization with No Dissipative Conditions [0.7373617024876725]
非線形力学系をカルマン線形化法により線形常微分方程式(ODE)に埋め込む方法について検討する。
本分析は,従来の散逸状態を超えて誤差境界を探索することによって,これらの知見を拡張した。
我々は、この共振条件がカールマン線型化のトランケーションレベル$N$に対して線型収束をもたらすことを証明した。
論文 参考訳(メタデータ) (2024-05-21T12:09:34Z) - Learning Linearized Models from Nonlinear Systems with Finite Data [1.6026317505839445]
真の基礎となる力学が非線形であるとき、線形化モデルを同定する問題を考察する。
複数のトラジェクトリに基づく決定論的データ取得アルゴリズムを提供し、次に正規化最小二乗アルゴリズムを提案する。
我々の誤差境界は、非線形性による誤差とノイズによる誤差とのトレードオフを示し、任意に小さな誤差で線形化された力学を学習できることを示す。
論文 参考訳(メタデータ) (2023-09-15T22:58:03Z) - A New Approach to Learning Linear Dynamical Systems [19.47235707806519]
本稿では,線形力学系を時間軌道からシステムパラメータの誤差まで,初めて学習するアルゴリズムを提案する。
本アルゴリズムはモーメント推定器を用いて,動的に抽出できるパラメータを直接推定する。
論文 参考訳(メタデータ) (2023-01-23T16:07:57Z) - Generalized Quadratic Embeddings for Nonlinear Dynamics using Deep
Learning [11.339982217541822]
本稿では非線形システムの力学をモデル化するためのデータ駆動手法を提案する。
本研究では,昇降原理に着想を得た2次系を共通構造として用いることを提案する。
論文 参考訳(メタデータ) (2022-11-01T10:03:34Z) - Identifiability and Asymptotics in Learning Homogeneous Linear ODE Systems from Discrete Observations [114.17826109037048]
通常の微分方程式(ODE)は、機械学習において最近多くの注目を集めている。
理論的な側面、例えば、統計的推定の識別可能性と特性は、いまだに不明である。
本稿では,1つの軌道からサンプリングされた等間隔の誤差のない観測結果から,同次線形ODE系の同定可能性について十分な条件を導出する。
論文 参考訳(メタデータ) (2022-10-12T06:46:38Z) - A Priori Denoising Strategies for Sparse Identification of Nonlinear
Dynamical Systems: A Comparative Study [68.8204255655161]
本研究では, 局所的およびグローバルな平滑化手法の性能と, 状態測定値の偏差について検討・比較する。
一般に,測度データセット全体を用いたグローバルな手法は,局所点の周辺に隣接するデータサブセットを用いる局所的手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-01-29T23:31:25Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
現代の力学系はますます非線形で複雑なものになりつつある。
予測と制御のためのコンパクトで包括的な表現でこれらのシステムをモデル化するフレームワークが必要である。
本手法は,教師付き学習手法を用いてこれらの基礎関数を学習する。
論文 参考訳(メタデータ) (2021-09-06T04:39:06Z) - Fluctuation-dissipation Type Theorem in Stochastic Linear Learning [2.8292841621378844]
ゆらぎ散逸定理(英: fluctuation-dissipation theorem, FDT)は、一階微分方程式の単純かつ強力な結果である。
入力ベクトルが学習対象となる線形行列によって出力ベクトルに写像される線形学習力学は、全バッチ勾配降下スキームを勾配降下のものと置き換えるときにランゲヴィン力学を忠実に模倣する検証版を持つ。
我々は,MNIST, CIFAR-10, CIFAR-10などの機械学習データセットにおける線形学習力学の一般化検証とその妥当性を導出する。
論文 参考訳(メタデータ) (2021-06-04T02:54:26Z) - Linear embedding of nonlinear dynamical systems and prospects for
efficient quantum algorithms [74.17312533172291]
有限非線形力学系を無限線型力学系(埋め込み)にマッピングする方法を述べる。
次に、有限線型系 (truncation) による結果の無限線型系を近似するアプローチを検討する。
論文 参考訳(メタデータ) (2020-12-12T00:01:10Z) - Active Learning for Nonlinear System Identification with Guarantees [102.43355665393067]
状態遷移が既知の状態-作用対の特徴埋め込みに線形に依存する非線形力学系のクラスについて検討する。
そこで本稿では, トラジェクティブ・プランニング, トラジェクティブ・トラッキング, システムの再推定という3つのステップを繰り返すことで, この問題を解決するためのアクティブ・ラーニング・アプローチを提案する。
本手法は, 非線形力学系を標準線形回帰の統計速度と同様, パラメトリック速度で推定する。
論文 参考訳(メタデータ) (2020-06-18T04:54:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。