論文の概要: Convolutional Learning on Simplicial Complexes
- arxiv url: http://arxiv.org/abs/2301.11163v1
- Date: Thu, 26 Jan 2023 15:08:11 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-27 13:25:51.526835
- Title: Convolutional Learning on Simplicial Complexes
- Title(参考訳): 単純複体に関する畳み込み学習
- Authors: Maosheng Yang and Elvin Isufi
- Abstract要約: 本稿では, 単純複雑畳み込みニューラルネットワーク(SCCNN)を提案する。
マルチホップの単純な隣接に基づく畳み込みを、共通の顔と顔を通して独立に行う。
- 参考スコア(独自算出の注目度): 13.604803091781926
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a simplicial complex convolutional neural network (SCCNN) to learn
data representations on simplicial complexes. It performs convolutions based on
the multi-hop simplicial adjacencies via common faces and cofaces independently
and captures the inter-simplicial couplings, generalizing state-of-the-art.
Upon studying symmetries of the simplicial domain and the data space, it is
shown to be permutation and orientation equivariant, thus, incorporating such
inductive biases. Based on the Hodge theory, we perform a spectral analysis to
understand how SCCNNs regulate data in different frequencies, showing that the
convolutions via faces and cofaces operate in two orthogonal data spaces.
Lastly, we study the stability of SCCNNs to domain deformations and examine the
effects of various factors. Empirical results show the benefits of higher-order
convolutions and inter-simplicial couplings in simplex prediction and
trajectory prediction.
- Abstract(参考訳): 本稿では, 単純複雑畳み込みニューラルネットワーク(SCCNN)を提案する。
共通面とコフェイスによる多面的簡素な隣接性に基づく畳み込みを独立に行い、単純化間結合をキャプチャし、最先端を一般化する。
単純領域とデータ空間の対称性を研究する際、置換と向きの同変が示され、そのような帰納バイアスが組み込まれている。
ホッジ理論に基づき、sccnnが異なる周波数でどのようにデータを制御しているかを理解するためにスペクトル解析を行い、顔と顔間の畳み込みが2つの直交データ空間で機能するかを示した。
最後に,SCCNNのドメイン変形に対する安定性について検討し,各種因子の影響について検討する。
実験の結果、単純な予測と軌道予測における高次畳み込みと単純結合の利点が示された。
関連論文リスト
- Higher-Order Topological Directionality and Directed Simplicial Neural Networks [12.617840099457066]
そこで我々は,高次方向性の概念を導入し,それに基づいてDir-SNN(Directed Simplicial Neural Networks)を設計した。
Dir-SNNは、有向simplicialコンプレックスで動作するメッセージパッシングネットワークである。
合成ソースローカライゼーションタスクの実験により、Dir-SNNは、基礎となるコンプレックスが向くと、無向SNNよりも優れることを示した。
論文 参考訳(メタデータ) (2024-09-12T20:37:14Z) - Neural Tangent Kernels Motivate Graph Neural Networks with
Cross-Covariance Graphs [94.44374472696272]
グラフニューラルネットワーク(GNN)の文脈におけるNTKとアライメントについて検討する。
その結果、2層GNNのアライメントの最適性に関する理論的保証が確立された。
これらの保証は、入力と出力データの相互共分散の関数であるグラフシフト演算子によって特徴づけられる。
論文 参考訳(メタデータ) (2023-10-16T19:54:21Z) - SC-MAD: Mixtures of Higher-order Networks for Data Augmentation [36.33265644447091]
単純複体は、グラフニューラルネットワーク(GNN)の単純複体モデルへの一般化にインスピレーションを与えた。
本稿では, 線形および非線形混合機構による単純錯体のデータ増大について述べる。
理論的には、合成単純錯体は、同型密度に関して、既存のデータ間で相互に相互作用することを示した。
論文 参考訳(メタデータ) (2023-09-14T06:25:39Z) - Generalized Simplicial Attention Neural Networks [22.171364354867723]
我々はGSAN(Generalized Simplicial Attention Neural Networks)を紹介する。
GSANは、マスク付き自己意図層を用いて、単純な複合体に生きるデータを処理する。
これらのスキームは、タスク指向の方法で、連続した順序の隣り合う単純さに関連するデータを組み合わせる方法を学ぶ。
論文 参考訳(メタデータ) (2023-09-05T11:29:25Z) - DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained
Diffusion [66.21290235237808]
本稿では,データセットからのインスタンスのバッチを進化状態にエンコードするエネルギー制約拡散モデルを提案する。
任意のインスタンス対間の対拡散強度に対する閉形式最適推定を示唆する厳密な理論を提供する。
各種タスクにおいて優れた性能を有する汎用エンコーダバックボーンとして,本モデルの適用性を示す実験を行った。
論文 参考訳(メタデータ) (2023-01-23T15:18:54Z) - Tensor-based Multi-view Spectral Clustering via Shared Latent Space [14.470859959783995]
MvSC(Multi-view Spectral Clustering)は多様なデータソースによって注目を集めている。
MvSCの新しい手法はRestricted Kernel Machineフレームワークから共有潜在空間を介して提案される。
論文 参考訳(メタデータ) (2022-07-23T17:30:54Z) - coVariance Neural Networks [119.45320143101381]
グラフニューラルネットワーク(GNN)は、グラフ構造化データ内の相互関係を利用して学習する効果的なフレームワークである。
我々は、サンプル共分散行列をグラフとして扱う、共分散ニューラルネットワーク(VNN)と呼ばれるGNNアーキテクチャを提案する。
VNN の性能は PCA ベースの統計手法よりも安定していることを示す。
論文 参考訳(メタデータ) (2022-05-31T15:04:43Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Deformation Robust Roto-Scale-Translation Equivariant CNNs [10.44236628142169]
グループ同変畳み込みニューラルネットワーク(G-CNN)は,固有対称性を持つ一般化性能を著しく向上させる。
G-CNNの一般的な理論と実践的実装は、回転またはスケーリング変換の下での平面画像に対して研究されている。
論文 参考訳(メタデータ) (2021-11-22T03:58:24Z) - Dist2Cycle: A Simplicial Neural Network for Homology Localization [66.15805004725809]
単純複体は多方向順序関係を明示的にエンコードするグラフの高次元一般化と見なすことができる。
単体錯体の$k$-homological特徴によってパラメータ化された関数のグラフ畳み込みモデルを提案する。
論文 参考訳(メタデータ) (2021-10-28T14:59:41Z) - Inverse Learning of Symmetries [71.62109774068064]
2つの潜在部分空間からなるモデルで対称性変換を学ぶ。
我々のアプローチは、情報ボトルネックと連続的な相互情報正規化器の組み合わせに基づいています。
我々のモデルは, 人工的および分子的データセットにおける最先端の手法より優れている。
論文 参考訳(メタデータ) (2020-02-07T13:48:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。