論文の概要: Improving deep learning precipitation nowcasting by using prior
knowledge
- arxiv url: http://arxiv.org/abs/2301.11707v1
- Date: Fri, 27 Jan 2023 13:35:25 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-30 15:37:41.697240
- Title: Improving deep learning precipitation nowcasting by using prior
knowledge
- Title(参考訳): 事前知識を用いた深層学習降水流の改善
- Authors: Matej Choma and Petr \v{S}im\'anek and Jakub Bartel
- Abstract要約: 深層学習法は, 予測誤差の観点から, 短時間の高分解能降水が支配的である。
我々は,PhyDNetモデルに先立ってより正確な物理モデルを導入するために,拡散拡散微分方程式をPhyCellに手動で設計する実験を行った。
結果は、PhyCellは意図したダイナミクスを学習できるが、PhyDNetのトレーニングは損失最適化によって駆動され、結果として同じ予測能力を持つモデルが得られることを示している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning methods dominate short-term high-resolution precipitation
nowcasting in terms of prediction error. However, their operational usability
is limited by difficulties explaining dynamics behind the predictions, which
are smoothed out and missing the high-frequency features due to optimizing for
mean error loss functions. We experiment with hand-engineering of the
advection-diffusion differential equation into a PhyCell to introduce more
accurate physical prior to a PhyDNet model that disentangles physical and
residual dynamics. Results indicate that while PhyCell can learn the intended
dynamics, training of PhyDNet remains driven by loss optimization, resulting in
a model with the same prediction capabilities.
- Abstract(参考訳): 深層学習手法は, 予測誤差の観点で, 短期高分解能降水流を優占する。
しかし、予測の背後にあるダイナミクスを説明するのが難しく、平均誤差損失関数の最適化のために高周波特性が欠落しているため、操作性は限られている。
我々は,PhyDNetモデルに先立って,より正確な物理モデルを導入するために,逆流拡散微分方程式をPhyCellに手動で設計する実験を行った。
その結果、phycellは意図したダイナミクスを学習できるが、phydnetのトレーニングは損失最適化によって駆動され、結果として同じ予測能力を持つモデルとなる。
関連論文リスト
- Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
都市フロー予測は、バス、タクシー、ライド駆動モデルといった交通サービスのスループットを見積もる、微妙な時間的モデリングである。
最近の予測解は、物理学誘導機械学習(PGML)の概念による改善をもたらす。
我々は、PN(atized Physics-guided Network)を開発し、P-GASR(Physical-guided Active Sample Reweighting)を提案する。
論文 参考訳(メタデータ) (2024-07-18T15:44:23Z) - Enhanced Spatiotemporal Prediction Using Physical-guided And Frequency-enhanced Recurrent Neural Networks [17.91230192726962]
本稿では,時空間力学を推定する物理誘導型ニューラルネットワークを提案する。
また、物理状態をより正確にモデル化するための物理制約付き適応二階ルンゲ・クッタ法を提案する。
我々のモデルは最先端の手法より優れ、より少ないパラメータ数でデータセットで最高の性能を発揮する。
論文 参考訳(メタデータ) (2024-05-23T12:39:49Z) - On the Dynamics Under the Unhinged Loss and Beyond [104.49565602940699]
我々は、閉形式力学を解析するための数学的機会を提供する、簡潔な損失関数であるアンヒンジド・ロスを導入する。
アンヒンジされた損失は、時間変化学習率や特徴正規化など、より実践的なテクニックを検討することができる。
論文 参考訳(メタデータ) (2023-12-13T02:11:07Z) - Koopman Invertible Autoencoder: Leveraging Forward and Backward Dynamics
for Temporal Modeling [13.38194491846739]
我々は、Koopman Invertible Autoencoders (KIA) と呼ぶ、Koopman演算子理論に基づく新しい機械学習モデルを提案する。
KIAは、無限次元ヒルベルト空間における前方と後方のダイナミクスをモデル化することによって、システムの固有の特性を捉えている。
これにより,低次元表現を効率よく学習し,長期システムの挙動をより正確に予測することが可能になる。
論文 参考訳(メタデータ) (2023-09-19T03:42:55Z) - Towards Long-Term predictions of Turbulence using Neural Operators [68.8204255655161]
機械学習を用いて乱流シミュレーションのための低次/サロゲートモデルを開発することを目的としている。
異なるモデル構造が解析され、U-NET構造は標準FNOよりも精度と安定性が良い。
論文 参考訳(メタデータ) (2023-07-25T14:09:53Z) - Deep learning for spatio-temporal forecasting -- application to solar
energy [12.5097469793837]
この論文は、深い学習を伴う原則付き時間予測の主題に取り組む。
エレクトロニティ・ド・フランス(EDF)のモチベーション応用は、魚眼画像による短期的な太陽エネルギー予測である。
論文 参考訳(メタデータ) (2022-05-07T06:42:48Z) - Uncertainty-Aware Time-to-Event Prediction using Deep Kernel Accelerated
Failure Time Models [11.171712535005357]
本稿では,時間-時間予測タスクのためのDeep Kernel Accelerated Failure Timeモデルを提案する。
我々のモデルは、2つの実世界のデータセットの実験において、繰り返しニューラルネットワークに基づくベースラインよりも良い点推定性能を示す。
論文 参考訳(メタデータ) (2021-07-26T14:55:02Z) - Hybrid Physics and Deep Learning Model for Interpretable Vehicle State
Prediction [75.1213178617367]
深層学習と物理運動モデルを組み合わせたハイブリッドアプローチを提案する。
ハイブリッドモデルの一部として,ディープニューラルネットワークの出力範囲を制限することで,解釈可能性を実現する。
その結果, ハイブリッドモデルでは, 既存のディープラーニング手法に比べて精度を低下させることなく, モデル解釈性が向上できることがわかった。
論文 参考訳(メタデータ) (2021-03-11T15:21:08Z) - Adversarial Refinement Network for Human Motion Prediction [61.50462663314644]
リカレントニューラルネットワークとフィードフォワードディープネットワークという2つの一般的な手法は、粗い動きの傾向を予測することができる。
本稿では,新たな逆誤差増大を伴う簡易かつ効果的な粗大きめ機構に従えば,ARNet(Adversarial Refinement Network)を提案する。
論文 参考訳(メタデータ) (2020-11-23T05:42:20Z) - Relaxing the Constraints on Predictive Coding Models [62.997667081978825]
予測符号化(英: Predictive coding)は、脳が行う主計算が予測誤差の最小化であるとする皮質機能の影響力のある理論である。
アルゴリズムの標準的な実装は、同じ前方と後方の重み、後方の非線形微分、1-1エラーユニット接続といった、潜在的に神経的に予測できない特徴を含んでいる。
本稿では,これらの特徴はアルゴリズムに不可欠なものではなく,Hebbianの更新ルールを用いてパラメータセットを直接あるいは学習することで,学習性能に悪影響を及ぼすことなく除去可能であることを示す。
論文 参考訳(メタデータ) (2020-10-02T15:21:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。