論文の概要: A Bias-Variance-Privacy Trilemma for Statistical Estimation
- arxiv url: http://arxiv.org/abs/2301.13334v1
- Date: Mon, 30 Jan 2023 23:40:20 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-01 18:20:24.738552
- Title: A Bias-Variance-Privacy Trilemma for Statistical Estimation
- Title(参考訳): 統計的推定のためのバイアス変数生産性トリレンマ
- Authors: Gautam Kamath, Argyris Mouzakis, Matthew Regehr, Vikrant Singhal,
Thomas Steinke, Jonathan Ullman
- Abstract要約: 任意の分布に対して低バイアス,低分散,低プライバシ損失を同時に有するアルゴリズムは存在しないことを実証する。
分布が対称であると仮定した場合、近似差分プライバシーの下では、偏りのない平均推定が可能であることを示す。
- 参考スコア(独自算出の注目度): 19.548528664406874
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The canonical algorithm for differentially private mean estimation is to
first clip the samples to a bounded range and then add noise to their empirical
mean. Clipping controls the sensitivity and, hence, the variance of the noise
that we add for privacy. But clipping also introduces statistical bias. We
prove that this tradeoff is inherent: no algorithm can simultaneously have low
bias, low variance, and low privacy loss for arbitrary distributions.
On the positive side, we show that unbiased mean estimation is possible under
approximate differential privacy if we assume that the distribution is
symmetric. Furthermore, we show that, even if we assume that the data is
sampled from a Gaussian, unbiased mean estimation is impossible under pure or
concentrated differential privacy.
- Abstract(参考訳): 差分的平均推定のための標準アルゴリズムは、まずサンプルを有界範囲にクリップし、次いで経験的な平均値にノイズを加える。
クリップは感度を制御し、したがってプライバシーのために付加するノイズのばらつきを制御します。
しかし、クリッピングは統計バイアスをもたらす。
我々は、このトレードオフが本質的に存在することを証明している: 任意の分布に対してバイアスが低く、分散が低く、プライバシー損失が低くなるアルゴリズムは存在しない。
正の面では、分布が対称であると仮定すると、偏りのない平均推定は近似微分プライバシーの下で可能であることを示す。
さらに, データがガウス系からサンプリングされていると仮定しても, 純あるいは集中的な微分プライバシーでは, 偏りのない平均推定は不可能であることを示す。
関連論文リスト
- Pseudo-Probability Unlearning: Towards Efficient and Privacy-Preserving Machine Unlearning [59.29849532966454]
本稿では,PseudoProbability Unlearning (PPU)を提案する。
提案手法は,最先端の手法に比べて20%以上の誤りを忘れる改善を実現している。
論文 参考訳(メタデータ) (2024-11-04T21:27:06Z) - Enhanced Privacy Bound for Shuffle Model with Personalized Privacy [32.08637708405314]
Differential Privacy(DP)は、ローカルユーザと中央データキュレーターの間の中間信頼サーバを導入する、強化されたプライバシプロトコルである。
これは、局所的にランダム化されたデータを匿名化しシャッフルすることで、中央のDP保証を著しく増幅する。
この研究は、各ユーザーごとにパーソナライズされたローカルプライバシを必要とする、より実践的な設定のために、中央のプライバシ境界を導出することに焦点を当てている。
論文 参考訳(メタデータ) (2024-07-25T16:11:56Z) - Noise Variance Optimization in Differential Privacy: A Game-Theoretic Approach Through Per-Instance Differential Privacy [7.264378254137811]
差分プライバシー(DP)は、個人をターゲットデータセットに含めることによる分布の変化を観察することにより、プライバシー損失を測定することができる。
DPは、AppleやGoogleのような業界巨人の機械学習におけるデータセットの保護において際立っている。
本稿では,PDPを制約として提案し,各データインスタンスのプライバシ損失を測定し,個々のインスタンスに適したノイズを最適化する。
論文 参考訳(メタデータ) (2024-04-24T06:51:16Z) - Optimizing the Noise in Self-Supervised Learning: from Importance
Sampling to Noise-Contrastive Estimation [80.07065346699005]
GAN(Generative Adversarial Networks)のように、最適な雑音分布はデータ分布に等しくなると広く想定されている。
我々は、この自己教師型タスクをエネルギーベースモデルの推定問題として基礎づけるノイズ・コントラスト推定に目を向ける。
本研究は, 最適雑音のサンプリングは困難であり, 効率性の向上は, データに匹敵する雑音分布を選択することに比べ, 緩やかに行うことができると結論付けた。
論文 参考訳(メタデータ) (2023-01-23T19:57:58Z) - Differentially-Private Bayes Consistency [70.92545332158217]
差分プライバシー(DP)を満たすベイズ一貫した学習ルールを構築する。
ほぼ最適なサンプル複雑性を持つ半教師付き環境で,任意のVCクラスをプライベートに学習できることを実証する。
論文 参考訳(メタデータ) (2022-12-08T11:57:30Z) - Individual Privacy Accounting for Differentially Private Stochastic Gradient Descent [69.14164921515949]
DP-SGDで訓練されたモデルをリリースする際の個々の事例に対するプライバシー保証を特徴付ける。
ほとんどの例では、最悪のケースよりも強力なプライバシー保証を享受しています。
これは、モデルユーティリティの観点からは守られないグループが同時に、より弱いプライバシー保証を経験することを意味する。
論文 参考訳(メタデータ) (2022-06-06T13:49:37Z) - Nonparametric extensions of randomized response for private confidence sets [51.75485869914048]
本研究は,局所的差分プライバシー(LDP)の制約の下で,集団平均の非パラメトリック,非漸近的統計的推測を行う手法を導出する。
民営化データへのアクセスのみを与えられた場合、$mustar$に対して信頼区間(CI)と時間一様信頼シーケンス(CS)を提示する。
論文 参考訳(メタデータ) (2022-02-17T16:04:49Z) - Smoothed Differential Privacy [55.415581832037084]
微分プライバシー(DP)は、最悪のケース分析に基づいて広く受け入れられ、広く適用されているプライバシーの概念である。
本稿では, 祝賀されたスムーズな解析の背景にある最悪の平均ケースのアイデアに倣って, DPの自然な拡張を提案する。
サンプリング手順による離散的なメカニズムはDPが予測するよりもプライベートであるのに対して,サンプリング手順による連続的なメカニズムはスムーズなDP下では依然としてプライベートではないことが証明された。
論文 参考訳(メタデータ) (2021-07-04T06:55:45Z) - Non-parametric Differentially Private Confidence Intervals for the
Median [3.205141100055992]
本稿では,中央値に対する有意な個人的信頼区間を計算するためのいくつかの戦略を提案し,評価する。
また、サンプリングからのエラーと出力の保護からのエラーという2つの不確実性源に対処することが、この不確実性を逐次的に組み込んだ単純なアプローチよりも望ましいことを示す。
論文 参考訳(メタデータ) (2021-06-18T19:45:37Z) - The Discrete Gaussian for Differential Privacy [23.977143445822897]
微分プライベートシステムを構築するための重要なツールは、機密データセットで評価された関数の出力にガウスノイズを追加することである。
これまでの研究は、一見無害な数値エラーがプライバシーを完全に破壊することを示した。
差分プライバシーの文脈において、離散ガウシアンを導入・分析する。
論文 参考訳(メタデータ) (2020-03-31T18:00:00Z) - Propose, Test, Release: Differentially private estimation with high
probability [9.25177374431812]
我々はPTR機構の新たな一般バージョンを導入し、微分プライベートな推定器に対して高い確率誤差境界を導出する。
我々のアルゴリズムは、データ上の有界性仮定なしで中央値と平均値の差分プライベートな推定を行うための最初の統計的保証を提供する。
論文 参考訳(メタデータ) (2020-02-19T01:29:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。