論文の概要: Approximating the Shapley Value without Marginal Contributions
- arxiv url: http://arxiv.org/abs/2302.00736v1
- Date: Wed, 1 Feb 2023 20:14:22 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-03 16:16:47.543307
- Title: Approximating the Shapley Value without Marginal Contributions
- Title(参考訳): マージナルコントリビューションを伴わないシェープリー値の近似
- Authors: Patrick Kolpaczki, Viktor Bengs, Eyke H\"ullermeier
- Abstract要約: Shapley値は、おそらく、協調ゲームにおいてプレイヤーに有意義な貢献価値を割り当てる最も一般的なアプローチである。
本稿では,余剰寄与の概念から分離したShapley値の表現に基づく2つのパラメータフリーおよびドメイン非依存近似アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 8.298716599039501
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Shapley value is arguably the most popular approach for assigning a
meaningful contribution value to players in a cooperative game, which has
recently been used intensively in various areas of machine learning, most
notably in explainable artificial intelligence. The meaningfulness is due to
axiomatic properties that only the Shapley value satisfies, which, however,
comes at the expense of an exact computation growing exponentially with the
number of agents. Accordingly, a number of works are devoted to the efficient
approximation of the Shapley values, all of which revolve around the notion of
an agent's marginal contribution. In this paper, we propose with SVARM and
Stratified SVARM two parameter-free and domain-independent approximation
algorithms based on a representation of the Shapley value detached from the
notion of marginal contributions. We prove unmatched theoretical guarantees
regarding their approximation quality and provide satisfying empirical results.
- Abstract(参考訳): Shapleyの値は、最近機械学習の様々な分野、特に説明可能な人工知能において集中的に使われている協調ゲームにおいて、プレイヤーに有意義な貢献価値を割り当てる最も一般的なアプローチである。
意味性は、シャプリー値のみが満足する公理的性質によるものであるが、エージェントの数で指数関数的に増加する正確な計算を犠牲にしている。
したがって、多くの研究がシェープリーの値の効率的な近似に費やされており、それらはエージェントの限界貢献の概念に反するものである。
本稿では,余剰貢献の概念から分離されたShapley値の表現に基づいて,SVARM と Stratified SVARM の2つのパラメータフリーおよびドメイン非依存近似アルゴリズムを提案する。
近似品質に関する不一致の理論的保証を証明し, 満足できる実験結果を提供する。
関連論文リスト
- Statistical Inference for Temporal Difference Learning with Linear Function Approximation [62.69448336714418]
時間差差(TD)学習は、おそらく政策評価に最も広く使用されるものであり、この目的の自然な枠組みとして機能する。
本稿では,Polyak-Ruppert平均化と線形関数近似によるTD学習の整合性について検討し,既存の結果よりも3つの重要な改善点を得た。
論文 参考訳(メタデータ) (2024-10-21T15:34:44Z) - Improving the Sampling Strategy in KernelSHAP [0.8057006406834466]
KernelSHAPフレームワークは、重み付けされた条件付き期待値のサンプルサブセットを用いて、Shapley値の近似を可能にする。
本稿では,現在最先端戦略における重みの分散を低減するための安定化手法,サンプルサブセットに基づいてShapleyカーネル重みを補正する新しい重み付け方式,および重要なサブセットを包含して修正されたShapleyカーネル重みと統合する簡単な戦略を提案する。
論文 参考訳(メタデータ) (2024-10-07T10:02:31Z) - Fast Shapley Value Estimation: A Unified Approach [71.92014859992263]
冗長な手法を排除し、単純で効率的なシェープリー推定器SimSHAPを提案する。
既存手法の解析において、推定器は特徴部分集合からランダムに要約された値の線形変換として統一可能であることを観察する。
実験により,SimSHAPの有効性が検証され,精度の高いShapley値の計算が大幅に高速化された。
論文 参考訳(メタデータ) (2023-11-02T06:09:24Z) - DU-Shapley: A Shapley Value Proxy for Efficient Dataset Valuation [23.646508094051768]
我々は、データセットのバリュエーションの問題、すなわち、インクリメンタルゲインを定量化する問題を考える。
Shapleyの値は、その正式な公理的正当化のためにデータセットのバリュエーションを実行する自然なツールである。
本稿では,離散一様分布下での予測として表現される離散一様シャプリーと呼ばれる新しい近似を提案する。
論文 参考訳(メタデータ) (2023-06-03T10:22:50Z) - Efficient Shapley Values Estimation by Amortization for Text
Classification [66.7725354593271]
我々は,各入力特徴のシェープ値を直接予測し,追加のモデル評価を行なわずに補正モデルを開発する。
2つのテキスト分類データセットの実験結果から、アモルタイズされたモデルでは、Shapley Valuesを最大60倍のスピードアップで正確に見積もっている。
論文 参考訳(メタデータ) (2023-05-31T16:19:13Z) - A $k$-additive Choquet integral-based approach to approximate the SHAP
values for local interpretability in machine learning [8.637110868126546]
本稿では,Shapley値に基づく機械学習モデルに対する解釈可能性の提供を目的とする。
Kernel SHAPと呼ばれるSHAPベースの手法は、計算労力を少なくしてそのような値を近似する効率的な戦略を採用する。
得られた結果から,提案手法ではSHAP値に近似するために属性の連立性に関する計算がより少ないことが確認された。
論文 参考訳(メタデータ) (2022-11-03T22:34:50Z) - SHAP-XRT: The Shapley Value Meets Conditional Independence Testing [21.794110108580746]
そこで本研究では,Shapleyに基づく説明手法と条件付き独立性テストが密接に関連していることを示す。
本研究では,条件付きランダム化テスト(CRT, Conditional Randomization Test)にインスパイアされたテスト手法であるSHAPley Explanation Randomization Test(SHAP-XRT)を紹介した。
我々は、Shapley値自体が大域(つまり全体)のnull仮説の期待$p$-値に上限を与えることを示した。
論文 参考訳(メタデータ) (2022-07-14T16:28:54Z) - Accelerating Shapley Explanation via Contributive Cooperator Selection [42.11059072201565]
DNNモデルのShapley説明を著しく高速化する新しい手法SHEARを提案する。
特徴連立の選定は、本提案のシェープリー連鎖則に従い、真真正値から絶対誤差を最小化する。
SHEARは、さまざまな評価指標で、最先端のベースラインメソッドを一貫して上回る。
論文 参考訳(メタデータ) (2022-06-17T03:24:45Z) - A Unified Framework for Multi-distribution Density Ratio Estimation [101.67420298343512]
バイナリ密度比推定(DRE)は多くの最先端の機械学習アルゴリズムの基礎を提供する。
ブレグマン最小化の発散の観点から一般的な枠組みを開発する。
我々のフレームワークはバイナリDREでそれらのフレームワークを厳格に一般化する手法に導かれることを示す。
論文 参考訳(メタデータ) (2021-12-07T01:23:20Z) - Collective eXplainable AI: Explaining Cooperative Strategies and Agent
Contribution in Multiagent Reinforcement Learning with Shapley Values [68.8204255655161]
本研究は,シェープリー値を用いたマルチエージェントRLにおける協調戦略を説明するための新しい手法を提案する。
結果は、差別的でない意思決定、倫理的かつ責任あるAI由来の意思決定、公正な制約の下での政策決定に影響を及ぼす可能性がある。
論文 参考訳(メタデータ) (2021-10-04T10:28:57Z) - $\gamma$-ABC: Outlier-Robust Approximate Bayesian Computation Based on a
Robust Divergence Estimator [95.71091446753414]
最寄りの$gamma$-divergence推定器をデータ差分尺度として用いることを提案する。
本手法は既存の不一致対策よりも高いロバスト性を実現する。
論文 参考訳(メタデータ) (2020-06-13T06:09:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。