論文の概要: Reinforcement learning-based estimation for partial differential equations
- arxiv url: http://arxiv.org/abs/2302.01189v2
- Date: Thu, 4 Apr 2024 14:35:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-05 20:51:58.996885
- Title: Reinforcement learning-based estimation for partial differential equations
- Title(参考訳): 強化学習に基づく偏微分方程式の推定
- Authors: Saviz Mowlavi, Mouhacine Benosman,
- Abstract要約: 流体流動のような非線形偏微分方程式に支配されるシステムでは、状態推定器の設計は減階モデル(ROM)に依存している。
本稿では,RL-ROE(Regress Learning reduced-order estimator)を提案する。
- 参考スコア(独自算出の注目度): 1.621267003497711
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In systems governed by nonlinear partial differential equations such as fluid flows, the design of state estimators such as Kalman filters relies on a reduced-order model (ROM) that projects the original high-dimensional dynamics onto a computationally tractable low-dimensional space. However, ROMs are prone to large errors, which negatively affects the performance of the estimator. Here, we introduce the reinforcement learning reduced-order estimator (RL-ROE), a ROM-based estimator in which the correction term that takes in the measurements is given by a nonlinear policy trained through reinforcement learning. The nonlinearity of the policy enables the RL-ROE to compensate efficiently for errors of the ROM, while still taking advantage of the imperfect knowledge of the dynamics. Using examples involving the Burgers and Navier-Stokes equations, we show that in the limit of very few sensors, the trained RL-ROE outperforms a Kalman filter designed using the same ROM. Moreover, it yields accurate high-dimensional state estimates for trajectories corresponding to various physical parameter values, without direct knowledge of the latter.
- Abstract(参考訳): 流体流動のような非線形偏微分方程式に支配されるシステムでは、カルマンフィルタのような状態推定器の設計は、元の高次元力学を計算的に抽出可能な低次元空間に投影する減階モデル(ROM)に依存している。
しかし、ROMは大きなエラーを起こしやすいため、推定器の性能に悪影響を及ぼす。
本稿では,RL-ROE (Regress Learning reduced-order estimator) について述べる。
ポリシーの非線形性により、RL-ROEはROMの誤りを効率よく補うことができるが、力学の完全な知識を生かしたままである。
バーガース方程式とナビエ・ストークス方程式を含む例を用いて、訓練されたRL-ROEは、非常に少ないセンサーの限界において、同じROMを用いて設計されたカルマンフィルタよりも優れていることを示す。
さらに、各物理パラメータ値に対応する軌跡の高精度な高次元状態推定を、後者の直接的知識を使わずに得られる。
関連論文リスト
- Learning Controlled Stochastic Differential Equations [61.82896036131116]
本研究では,非一様拡散を伴う連続多次元非線形微分方程式のドリフト係数と拡散係数の両方を推定する新しい手法を提案する。
我々は、(L2)、(Linfty)の有限サンプル境界や、係数の正則性に適応する学習率を持つリスクメトリクスを含む、強力な理論的保証を提供する。
当社のメソッドはオープンソースPythonライブラリとして利用可能です。
論文 参考訳(メタデータ) (2024-11-04T11:09:58Z) - Revisiting Essential and Nonessential Settings of Evidential Deep Learning [70.82728812001807]
Evidential Deep Learning (EDL) は不確実性推定の新しい手法である。
本報告では,EDLの簡易かつ効果的な拡張型であるRe-EDLを提案する。
論文 参考訳(メタデータ) (2024-10-01T04:27:07Z) - PTPI-DL-ROMs: pre-trained physics-informed deep learning-based reduced order models for nonlinear parametrized PDEs [0.6827423171182154]
本稿では,物理インフォームメントによるPOD-DL-ROMの大幅な拡張について考察する。
まず,POD-DL-ROMをトランクネットアーキテクチャで補完し,空間領域内の各点における問題の解を計算する能力を付与する。
特に、利用可能な数少ないデータを活用して、低コストの事前学習手順を開発する。
論文 参考訳(メタデータ) (2024-05-14T12:46:12Z) - Low-rank extended Kalman filtering for online learning of neural
networks from streaming data [71.97861600347959]
非定常データストリームから非線形関数のパラメータを推定するための効率的なオンライン近似ベイズ推定アルゴリズムを提案する。
この方法は拡張カルマンフィルタ (EKF) に基づいているが、新しい低ランク+斜角行列分解法を用いている。
変分推論に基づく手法とは対照的に,本手法は完全に決定論的であり,ステップサイズチューニングを必要としない。
論文 参考訳(メタデータ) (2023-05-31T03:48:49Z) - Learning Discretized Neural Networks under Ricci Flow [51.36292559262042]
低精度重みとアクティベーションからなる離散ニューラルネットワーク(DNN)について検討する。
DNNは、訓練中に微分不可能な離散関数のために無限あるいはゼロの勾配に悩まされる。
論文 参考訳(メタデータ) (2023-02-07T10:51:53Z) - Deep Equilibrium Optical Flow Estimation [80.80992684796566]
最近のSOTA(State-of-the-art)光フローモデルでは、従来のアルゴリズムをエミュレートするために有限ステップの更新操作を使用する。
これらのRNNは大きな計算とメモリオーバーヘッドを課し、そのような安定した推定をモデル化するために直接訓練されていない。
暗黙的層の無限レベル固定点として直接流れを解く手法として,Deep equilibrium Flow estimatorを提案する。
論文 参考訳(メタデータ) (2022-04-18T17:53:44Z) - Non-linear manifold ROM with Convolutional Autoencoders and Reduced
Over-Collocation method [0.0]
非アフィンパラメトリックな依存、非線形性、興味のモデルにおける対流支配的な規則は、ゆっくりとしたコルモゴロフ n-幅の崩壊をもたらす。
我々は,Carlbergらによって導入された非線形多様体法を,オーバーコロケーションの削減とデコーダの教師/学生による学習により実現した。
本研究では,2次元非線形保存法と2次元浅水モデルを用いて方法論を検証し,時間とともに動的に進化する純粋データ駆動型手法と長期記憶ネットワークとの比較を行った。
論文 参考訳(メタデータ) (2022-03-01T11:16:50Z) - Deep-HyROMnet: A deep learning-based operator approximation for
hyper-reduction of nonlinear parametrized PDEs [0.0]
ディープニューラルネットワーク(DNN)を用いた非線形ROM演算子学習手法を提案する。
DNNによって強化された結果の超還元順序モデルはDeep-HyROMnetと呼ばれる。
数値計算の結果,Deep-HyROMnetsはPOD-GalerkinDEIMsよりも桁違いに高速であり,精度は同等であることがわかった。
論文 参考訳(メタデータ) (2022-02-05T23:45:25Z) - On the Effectiveness of Iterative Learning Control [28.76900887141432]
反復学習制御 (ILC) は, モデル誤差の存在下で, 高い性能追跡を行うための強力な手法である。
大規模なモデリングエラーがあっても、ICCの有効性を説明する理論的な研究はほとんどない。
ILC の最適 LQR コントローラに対して測定された準最適差は,高次項による MM よりも小さいことを示す。
論文 参考訳(メタデータ) (2021-11-17T22:35:39Z) - Learning to Estimate Without Bias [57.82628598276623]
ガウスの定理は、重み付き最小二乗推定器は線形モデルにおける線形最小分散アンバイアスド推定(MVUE)であると述べている。
本稿では、バイアス制約のあるディープラーニングを用いて、この結果を非線形設定に拡張する第一歩を踏み出す。
BCEの第二の動機は、同じ未知の複数の推定値が平均化されてパフォーマンスが向上するアプリケーションにおいてである。
論文 参考訳(メタデータ) (2021-10-24T10:23:51Z) - Cram\'er-Rao bound-informed training of neural networks for quantitative
MRI [11.964144201247198]
ニューラルネットワークは、定量的MRI、特に磁気共鳴フィンガープリントでパラメーターを推定するためにますます使われている。
それらの利点は、より優れた速度と非効率な非バイアス推定器の優位性である。
しかし、不均一なパラメータを推定することは困難である。
CRBを用いて二乗誤差を正規化するClam'erRao損失関数を提案する。
論文 参考訳(メタデータ) (2021-09-22T06:38:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。