論文の概要: Modelling Chemical Reaction Networks using Neural Ordinary Differential Equations
- arxiv url: http://arxiv.org/abs/2502.19397v1
- Date: Tue, 11 Feb 2025 10:10:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-02 03:22:45.458356
- Title: Modelling Chemical Reaction Networks using Neural Ordinary Differential Equations
- Title(参考訳): ニューラル正規微分方程式を用いた化学反応ネットワークのモデル化
- Authors: Anna C. M. Thöni, William E. Robinson, Yoram Bachrach, Wilhelm T. S. Huck, Tal Kachman,
- Abstract要約: 化学反応ネットワーク理論において、通常の微分方程式は化学種濃度の時間変化をモデル化するために用いられる。
本研究の目的は, 動的モデリングと深層学習を, ニューラル常微分方程式の形で組み合わせることで, 反応ネットワークにおけるこれらの隠れた洞察を解明することである。
- 参考スコア(独自算出の注目度): 6.1947324899410745
- License:
- Abstract: In chemical reaction network theory, ordinary differential equations are used to model the temporal change of chemical species concentration. As the functional form of these ordinary differential equations systems is derived from an empirical model of the reaction network, it may be incomplete. Our approach aims to elucidate these hidden insights in the reaction network by combining dynamic modelling with deep learning in the form of neural ordinary differential equations. Our contributions not only help to identify the shortcomings of existing empirical models but also assist the design of future reaction networks.
- Abstract(参考訳): 化学反応ネットワーク理論において、通常の微分方程式は化学種濃度の時間変化をモデル化するために用いられる。
これらの常微分方程式系の関数形式は反応ネットワークの経験的モデルから導かれるので、不完全かもしれない。
本研究の目的は, 動的モデリングと深層学習を, ニューラル常微分方程式の形で組み合わせることで, 反応ネットワークにおけるこれらの隠れた洞察を解明することである。
私たちの貢献は、既存の経験的モデルの欠点を特定するだけでなく、将来の反応ネットワークの設計にも役立ちます。
関連論文リスト
- No Equations Needed: Learning System Dynamics Without Relying on Closed-Form ODEs [56.78271181959529]
本稿では,従来の2段階モデリングプロセスから離れることで,低次元力学系をモデル化する概念シフトを提案する。
最初に閉形式方程式を発見して解析する代わりに、我々のアプローチ、直接意味モデリングは力学系の意味表現を予測する。
私たちのアプローチは、モデリングパイプラインを単純化するだけでなく、結果のモデルの透明性と柔軟性も向上します。
論文 参考訳(メタデータ) (2025-01-30T18:36:48Z) - Learning Chemical Reaction Representation with Reactant-Product Alignment [50.28123475356234]
RAlignは、様々な有機反応関連タスクのための新しい化学反応表現学習モデルである。
反応物質と生成物との原子対応を統合することにより、反応中に起こる分子変換を識別する。
モデルが重要な機能群に集中できるように,反応中心認識型アテンション機構を導入する。
論文 参考訳(メタデータ) (2024-11-26T17:41:44Z) - Fourier Neural Differential Equations for learning Quantum Field
Theories [57.11316818360655]
量子場理論は相互作用ハミルトニアンによって定義され、散乱行列によって実験データにリンクされる。
本稿では,NDEモデルを用いて理論,スカラー・ユーカワ理論,スカラー量子電磁力学を学習する。
理論の相互作用ハミルトニアンは、ネットワークパラメータから抽出することができる。
論文 参考訳(メタデータ) (2023-11-28T22:11:15Z) - Pseudo-Hamiltonian neural networks for learning partial differential
equations [0.0]
Pseudo-Hamiltonian Neural Network (PHNN)は、最近、通常の微分方程式でモデル化できる力学系を学ぶために導入された。
本稿では,この手法を偏微分方程式に拡張する。
得られたモデルは、保存、散逸、外部力を表す用語をモデル化する最大3つのニューラルネットワークと、学習または入力として与えられる個別の畳み込み演算子から構成される。
論文 参考訳(メタデータ) (2023-04-27T17:46:00Z) - Differentiable Programming of Chemical Reaction Networks [63.948465205530916]
化学反応ネットワークは、自然によって使用される最も基本的な計算基板の1つである。
膜によって分離された複数のチャンバーを持つシステムと同様に、よく混合されたシングルチャンバーシステムについて検討した。
我々は、微分可能な最適化と適切な正規化が相まって、非自明なスパース反応ネットワークを発見することを実証した。
論文 参考訳(メタデータ) (2023-02-06T11:41:14Z) - Neural Laplace: Learning diverse classes of differential equations in
the Laplace domain [86.52703093858631]
本稿では,これらすべてを含む多種多様な微分方程式(DE)を学習するための統一的な枠組みを提案する。
時間領域の力学をモデル化する代わりに、ラプラス領域でモデル化する。
The experiment, Neural Laplace shows excellent performance in modelling and extrapolating the trajectories of various class of DEs。
論文 参考訳(メタデータ) (2022-06-10T02:14:59Z) - Physics Informed RNN-DCT Networks for Time-Dependent Partial
Differential Equations [62.81701992551728]
時間依存偏微分方程式を解くための物理インフォームド・フレームワークを提案する。
我々のモデルは離散コサイン変換を用いて空間的および反復的なニューラルネットワークを符号化する。
ナヴィエ・ストークス方程式に対するテイラー・グリーン渦解の実験結果を示す。
論文 参考訳(メタデータ) (2022-02-24T20:46:52Z) - Climate Modeling with Neural Diffusion Equations [3.8521112392276]
ニューラル常微分方程式(NODE)と拡散方程式に基づく新しい気候モデルの設計を行う。
我々の手法は、既存のベースラインを非自明なマージンで一貫して上回る。
論文 参考訳(メタデータ) (2021-11-11T01:48:46Z) - Artificial neural network as a universal model of nonlinear dynamical
systems [0.0]
このマップは、重みがモデル化されたシステムをエンコードする人工知能ニューラルネットワークとして構築されている。
ローレンツ系、ロースラー系およびヒンドマール・ロースニューロンを考察する。
誘引子、パワースペクトル、分岐図、リャプノフ指数の視覚像に高い類似性が観察される。
論文 参考訳(メタデータ) (2021-03-06T16:02:41Z) - Kinetics-Informed Neural Networks [0.0]
我々は、通常の微分方程式を解くために、サロゲートモデルを構築するための基礎関数としてフィードフォワード人工ニューラルネットワークを用いる。
正規化多目的最適化設定におけるニューラルネットと運動モデルパラメータの同時学習により,逆問題の解が導かれることを示す。
この逆運動的ODEに対する代理的アプローチは、過渡的なデータに基づく反応機構の解明に役立てることができる。
論文 参考訳(メタデータ) (2020-11-30T00:07:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。