論文の概要: Elementary Proof of QAOA Convergence
- arxiv url: http://arxiv.org/abs/2302.04968v1
- Date: Thu, 9 Feb 2023 22:57:59 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-13 17:06:46.685091
- Title: Elementary Proof of QAOA Convergence
- Title(参考訳): qaoa収束の基礎的証明
- Authors: Lennart Binkowski, Gereon Ko{\ss}mann, Timo Ziegler, Ren\'e Schwonnek
- Abstract要約: 量子交互作用素 Ansatz (QAOA) に対する厳密な収束の証明を提供する。
この証明は量子断熱アルゴリズムとQAOAの接続を追従することを含み、自然に位相分離器とミキサーのキーワードの洗練された定義を示唆している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Quantum Alternating Operator Ansatz (QAOA) and its predecessor, the
Quantum Approximate Optimization Algorithm, are one of the most widely used
quantum algorithms for solving combinatorial optimization problems. However, as
there is yet no rigorous proof of convergence for the QAOA, we provide one in
this paper. The proof involves retracing the connection between the Quantum
Adiabatic Algorithm and the QAOA, and naturally suggests a refined definition
of the `phase separator' and `mixer' keywords.
- Abstract(参考訳): Quantum Alternating Operator Ansatz (QAOA)とそれ以前のQuantum Approximate Optimization Algorithmは、組合せ最適化問題を解決するために最も広く使われている量子アルゴリズムの1つである。
しかし、QAOA に対する厳密な収束の証明がまだ存在しないため、本論文ではそれについて述べる。
この証明は量子アディバティックアルゴリズムとQAOAの接続を遡り、自然に 'phase separator' と 'mixer' キーワードの洗練された定義を示唆している。
関連論文リスト
- Optimization by Decoded Quantum Interferometry [43.55132675053983]
本稿では,古典的復号化問題に対する古典的最適化問題を減じるための量子アルゴリズムを提案する。
DQIは、既知の量子時間古典アルゴリズムよりも近似比が良いことを示す。
論文 参考訳(メタデータ) (2024-08-15T17:47:42Z) - Bias-field digitized counterdiabatic quantum optimization [39.58317527488534]
我々はこのプロトコルをバイアス場デジタルダイアバティック量子最適化(BF-DCQO)と呼ぶ。
私たちの純粋に量子的なアプローチは、古典的な変分量子アルゴリズムへの依存を排除します。
基底状態の成功確率のスケーリング改善を実現し、最大2桁まで増大する。
論文 参考訳(メタデータ) (2024-05-22T18:11:42Z) - Solving Combinatorial Optimization Problems with a Block Encoding Quantum Optimizer [0.0]
Block ENcoding Quantum (BEQO) は、ブロック符号化を用いてコスト関数を表現するハイブリッド量子ソルバである。
以上の結果から,BENQOはQAOAよりも有意に優れた性能を示し,VQEと各種のパフォーマンス指標を比較検討した。
論文 参考訳(メタデータ) (2024-04-22T10:10:29Z) - A Faster Algorithm for the Free Energy in One-Dimensional Quantum
Systems [0.0]
翻訳不変な1次元量子スピン系の自由エネルギー密度を有限範囲で近似する問題を考える。
この問題の複雑さは、既知の硬度問題と密接な関係にあるため自明ではないが、最近、古典的なサブポリノミカル時間アルゴリズムが提案されている。
そこで本研究では,これより優れたアルゴリズムを提案し,その実行時に厳密なバウンダリを与える。
論文 参考訳(メタデータ) (2024-02-29T10:42:18Z) - A Review on Quantum Approximate Optimization Algorithm and its Variants [47.89542334125886]
量子近似最適化アルゴリズム(Quantum Approximate Optimization Algorithm、QAOA)は、難解な最適化問題を解くことを目的とした、非常に有望な変分量子アルゴリズムである。
この総合的なレビューは、様々なシナリオにおけるパフォーマンス分析を含む、QAOAの現状の概要を提供する。
我々は,提案アルゴリズムの今後の展望と方向性を探りながら,選択したQAOA拡張と変種の比較研究を行う。
論文 参考訳(メタデータ) (2023-06-15T15:28:12Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
単一画像超解像(SISR)問題を解くために,量子コンピューティングに基づくアルゴリズムを提案する。
提案したAQCアルゴリズムは、SISRの精度を維持しつつ、古典的なアナログよりも向上したスピードアップを実現する。
論文 参考訳(メタデータ) (2023-04-18T11:57:15Z) - An introduction to variational quantum algorithms for combinatorial optimization problems [0.0]
このチュートリアルは変分量子アルゴリズムのクラスに関する数学的記述を提供する。
量子側および古典側におけるこれらのハイブリッドアルゴリズムの重要な側面を正確に紹介する。
我々はQAOAに特に注意を払って、そのアルゴリズムに関わる量子回路と、その可能な誘導関数によって満たされる特性を詳述した。
論文 参考訳(メタデータ) (2022-12-22T14:27:52Z) - Monte Carlo Tree Search based Hybrid Optimization of Variational Quantum
Circuits [7.08228773002332]
我々はMCTS-QAOAと呼ばれる新しい変分量子アルゴリズムを提案する。
モンテカルロ木探索法と改良された自然ポリシー勾配解法を組み合わせて、量子回路内の離散変数と連続変数を最適化する。
MCTS-QAOAは耐雑音性に優れ、一般化QAOAの挑戦事例において先行アルゴリズムよりも優れていた。
論文 参考訳(メタデータ) (2022-03-30T23:15:21Z) - Quantum Approximate Optimization Algorithm Based Maximum Likelihood
Detection [80.28858481461418]
量子技術の最近の進歩は、ノイズの多い中間スケール量子(NISQ)デバイスへの道を開く。
量子技術の最近の進歩は、ノイズの多い中間スケール量子(NISQ)デバイスへの道を開く。
論文 参考訳(メタデータ) (2021-07-11T10:56:24Z) - Quantum Error Mitigation Relying on Permutation Filtering [84.66087478797475]
本稿では,既存の置換に基づく手法を特殊なケースとして含む,置換フィルタ(permutation filters)と呼ばれる一般的なフレームワークを提案する。
提案するフィルタ設計アルゴリズムは, 常に大域的最適度に収束し, フィルタが既存の置換法よりも大幅に改善できることを示す。
論文 参考訳(メタデータ) (2021-07-03T16:07:30Z) - An adaptive quantum approximate optimization algorithm for solving
combinatorial problems on a quantum computer [0.0]
量子近似最適化アルゴリズム(QAOA)は、最適化問題を解くハイブリッド変分量子古典アルゴリズムである。
我々は,QAOAの反復バージョンを開発し,特定のハードウェア制約に適応することができる。
アルゴリズムをMax-Cutグラフのクラス上でシミュレートし、標準QAOAよりもはるかに高速に収束することを示す。
論文 参考訳(メタデータ) (2020-05-20T18:00:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。