論文の概要: SetPINNs: Set-based Physics-informed Neural Networks
- arxiv url: http://arxiv.org/abs/2409.20206v2
- Date: Mon, 03 Feb 2025 14:41:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-04 16:04:21.624993
- Title: SetPINNs: Set-based Physics-informed Neural Networks
- Title(参考訳): SetPINNs:Set-based Physics-informed Neural Networks
- Authors: Mayank Nagda, Phil Ostheimer, Thomas Specht, Frank Rhein, Fabian Jirasek, Stephan Mandt, Marius Kloft, Sophie Fellenz,
- Abstract要約: ローカル依存関係を効果的にキャプチャするフレームワークであるSetPINNを紹介する。
ドメインをセットに分割して、物理法則を同時に適用しながら、ローカル依存関係をモデル化します。
- 参考スコア(独自算出の注目度): 31.193471532024407
- License:
- Abstract: Physics-Informed Neural Networks (PINNs) solve partial differential equations using deep learning. However, conventional PINNs perform pointwise predictions that neglect dependencies within a domain, which may result in suboptimal solutions. We introduce SetPINNs, a framework that effectively captures local dependencies. With a finite element-inspired sampling scheme, we partition a domain into sets to model local dependencies while simultaneously enforcing physical laws. We provide rigorous theoretical analysis and bounds to show that SetPINNs provide improved domain coverage over pointwise prediction methods. Extensive experiments across a range of synthetic and real-world tasks show improved accuracy, efficiency, and robustness.
- Abstract(参考訳): 物理インフォームドニューラルネットワーク(PINN)はディープラーニングを用いて偏微分方程式を解く。
しかし、従来のPINNは、ドメイン内の依存関係を無視するポイントワイズ予測を行い、それが最適でない解をもたらす可能性がある。
ローカル依存関係を効果的にキャプチャするフレームワークであるSetPINNを紹介する。
有限要素に着想を得たサンプリングスキームを用いて、局所依存をモデル化する集合に分割し、物理法則を同時に適用する。
厳密な理論的解析と境界を提供し、SetPINNがポイントワイド予測法よりもドメインカバレッジを向上させることを示す。
様々な合成および実世界のタスクにわたる大規模な実験では、精度、効率、堅牢性が改善された。
関連論文リスト
- RoPINN: Region Optimized Physics-Informed Neural Networks [66.38369833561039]
物理インフォームドニューラルネットワーク(PINN)は偏微分方程式(PDE)の解法として広く応用されている。
本稿では,地域最適化としての新たな訓練パラダイムを提案し,理論的に検討する。
実践的なトレーニングアルゴリズムであるRerea Optimized PINN(RoPINN)は、この新しいパラダイムからシームレスに派生している。
論文 参考訳(メタデータ) (2024-05-23T09:45:57Z) - Multifidelity domain decomposition-based physics-informed neural networks and operators for time-dependent problems [40.46280139210502]
多重忠実積層PINNとドメイン分解に基づく有限基底PINNの組み合わせを用いる。
ドメイン分解アプローチは、PINNと重ね合わせのPINNアプローチを明らかに改善する。
FBPINNアプローチは、多要素物理インフォームド・ディープ・オペレーター・ネットワークに拡張可能であることが実証された。
論文 参考訳(メタデータ) (2024-01-15T18:32:53Z) - PINNsFormer: A Transformer-Based Framework For Physics-Informed Neural Networks [22.39904196850583]
物理インフォームドニューラルネットワーク(PINN)は、偏微分方程式(PDE)の数値解を近似するための有望なディープラーニングフレームワークとして登場した。
我々は,この制限に対処するために,新しいTransformerベースのフレームワークであるPINNsFormerを紹介した。
PINNsFormerは、PINNの障害モードや高次元PDEなど、様々なシナリオにおいて優れた一般化能力と精度を実現する。
論文 参考訳(メタデータ) (2023-07-21T18:06:27Z) - On the Generalization of PINNs outside the training domain and the
Hyperparameters influencing it [1.3927943269211593]
PINNは、解データを必要としない微分方程式の解をエミュレートするように訓練されたニューラルネットワークアーキテクチャである。
トレーニング領域外におけるPINN予測の挙動を実証分析する。
PINNのアルゴリズム設定が一般化のポテンシャルに影響を及ぼすかどうかを評価し,予測に対する各効果を示す。
論文 参考訳(メタデータ) (2023-02-15T09:51:56Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
本研究では,より複雑に結合した常微分方程式(ODE)を解く物理インフォームドニューラルネットワーク(PINN)の能力を評価する。
PINNの複雑性が増大するにつれて,これらのベンチマークに対する正しい解が得られないことが示される。
PINN損失のラプラシアンは,ネットワーク容量の不足,ODEの条件の低下,局所曲率の高さなど,いくつかの理由を明らかにした。
論文 参考訳(メタデータ) (2022-10-14T15:01:32Z) - On the Intrinsic Structures of Spiking Neural Networks [66.57589494713515]
近年、時間依存データやイベント駆動データを扱う大きな可能性から、SNNへの関心が高まっている。
スパイキング計算における本質的な構造の影響を総合的に調査する研究が数多く行われている。
この研究はSNNの本質的な構造を深く掘り下げ、SNNの表現性への影響を解明する。
論文 参考訳(メタデータ) (2022-06-21T09:42:30Z) - Auto-PINN: Understanding and Optimizing Physics-Informed Neural
Architecture [77.59766598165551]
物理インフォームドニューラルネットワーク(PINN)は、ディープラーニングのパワーを科学計算にもたらし、科学と工学の実践に革命をもたらしている。
本稿では,ニューラル・アーキテクチャ・サーチ(NAS)手法をPINN設計に適用したAuto-PINNを提案する。
標準PDEベンチマークを用いた包括的事前実験により、PINNの構造と性能の関係を探索することができる。
論文 参考訳(メタデータ) (2022-05-27T03:24:31Z) - Revisiting PINNs: Generative Adversarial Physics-informed Neural
Networks and Point-weighting Method [70.19159220248805]
物理インフォームドニューラルネットワーク(PINN)は、偏微分方程式(PDE)を数値的に解くためのディープラーニングフレームワークを提供する
本稿では,GA機構とPINNの構造を統合したGA-PINNを提案する。
本稿では,Adaboost法の重み付け戦略からヒントを得て,PINNのトレーニング効率を向上させるためのPW法を提案する。
論文 参考訳(メタデータ) (2022-05-18T06:50:44Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
我々は、暗黙的ニューラルネットワーク(INN)の堅牢性を保証するために、区間到達可能性分析を用いる。
INNは暗黙の方程式をレイヤとして使用する暗黙の学習モデルのクラスである。
提案手法は, INNに最先端の区間境界伝搬法を適用するよりも, 少なくとも, 一般的には, 有効であることを示す。
論文 参考訳(メタデータ) (2022-04-01T03:31:27Z) - Robust Learning of Physics Informed Neural Networks [2.86989372262348]
物理インフォームドニューラルネットワーク(PINN)は偏微分方程式の解法に有効であることが示されている。
本稿では、PINNがトレーニングデータのエラーに敏感であり、これらのエラーをPDEの解領域上で動的に伝播させるのに過度に適合していることを示す。
論文 参考訳(メタデータ) (2021-10-26T00:10:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。