論文の概要: PAC-Bayesian Generalization Bounds for Adversarial Generative Models
- arxiv url: http://arxiv.org/abs/2302.08942v3
- Date: Fri, 14 Jul 2023 19:03:16 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-18 23:20:07.464322
- Title: PAC-Bayesian Generalization Bounds for Adversarial Generative Models
- Title(参考訳): 逆生成モデルに対するPAC-Bayesian一般化境界
- Authors: Sokhna Diarra Mbacke, Florence Clerc, Pascal Germain
- Abstract要約: We developed generalization bounds for model based on the Wasserstein distance and the total variation distance。
我々の結果はワッサースタイン GAN とエネルギーベース GAN に自然に適用され、これらの2つの領域に新たなトレーニング目標が提供される。
- 参考スコア(独自算出の注目度): 2.5137859989323537
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We extend PAC-Bayesian theory to generative models and develop generalization
bounds for models based on the Wasserstein distance and the total variation
distance. Our first result on the Wasserstein distance assumes the instance
space is bounded, while our second result takes advantage of dimensionality
reduction. Our results naturally apply to Wasserstein GANs and Energy-Based
GANs, and our bounds provide new training objectives for these two. Although
our work is mainly theoretical, we perform numerical experiments showing
non-vacuous generalization bounds for Wasserstein GANs on synthetic datasets.
- Abstract(参考訳): PAC-ベイズ理論を生成モデルに拡張し、ワッサーシュタイン距離と全変動距離に基づくモデルに対する一般化境界を開発する。
ワッサーシュタイン距離に関する我々の第一の結果は、インスタンス空間が有界であると仮定し、第二の結果は次元還元を利用する。
我々の結果はワッサースタイン GAN とエネルギーベース GAN に自然に適用され、これらの2つの領域に新たなトレーニング目標が提供される。
本研究は主に理論的だが, 合成データセット上でのワッサーシュタイン GAN の非空一般化境界を示す数値実験を行う。
関連論文リスト
- Uniform Generalization Bounds on Data-Dependent Hypothesis Sets via PAC-Bayesian Theory on Random Sets [25.250314934981233]
我々はまず,データ依存仮説セットを出力するトレーニングアルゴリズムを前提として,厳密な方法でPAC-Bayesianフレームワークを適用した。
このアプローチにより、多くのコンテキストに適用可能な、データ依存のバウンダリを証明できます。
論文 参考訳(メタデータ) (2024-04-26T14:28:18Z) - A Wasserstein perspective of Vanilla GANs [0.0]
バニラ GAN はワッサーシュタイン GAN の一般化である。
特に、ワッサーシュタイン距離におけるバニラ GAN のオラクル不等式を得る。
バニラ GAN とワッサーシュタイン GAN の収束率を未知の確率分布の推定子として結論付ける。
論文 参考訳(メタデータ) (2024-03-22T16:04:26Z) - Modeling the space-time correlation of pulsed twin beams [68.8204255655161]
パラメトリックダウンコンバージョンによって生成される絡み合ったツインビームは、画像指向アプリケーションで好まれるソースである。
本研究では,時間消費数値シミュレーションと非現実的な平面波ポンプ理論のギャップを埋めることを目的とした半解析モデルを提案する。
論文 参考訳(メタデータ) (2023-01-18T11:29:49Z) - Score-based Generative Modeling Secretly Minimizes the Wasserstein
Distance [14.846377138993642]
スコアベースモデルはまた、モデル上の適切な仮定の下で、それらの間のワッサーシュタイン距離を最小化することを示した。
我々の証明は、社会に独立した関心を持つことのできる最適輸送理論の新たな応用に基づいている。
論文 参考訳(メタデータ) (2022-12-13T03:48:01Z) - Super-model ecosystem: A domain-adaptation perspective [101.76769818069072]
本稿では,ドメイン適応による新たなスーパーモデルパラダイムの理論的基礎を確立することを試みる。
スーパーモデルパラダイムは、計算とデータコストと二酸化炭素排出量を減らすのに役立つ。
論文 参考訳(メタデータ) (2022-08-30T09:09:43Z) - Optimal 1-Wasserstein Distance for WGANs [2.1174215880331775]
有限標本とレジームの両方において、WGAN(Wasserstein GANs)を徹底的に解析する。
半離散状態における最適輸送理論の新たな結果を導出する。
論文 参考訳(メタデータ) (2022-01-08T13:04:03Z) - Learning High Dimensional Wasserstein Geodesics [55.086626708837635]
高次元の2つの確率分布の間のワッサーシュタイン測地線を計算するための新しい定式化と学習戦略を提案する。
ラグランジュ乗算器の手法を最適輸送(OT)問題の動的定式化に適用することにより、サドル点がワッサーシュタイン測地線であるミニマックス問題を導出する。
次に、深層ニューラルネットワークによる関数のパラメータ化を行い、トレーニングのためのサンプルベースの双方向学習アルゴリズムを設計する。
論文 参考訳(メタデータ) (2021-02-05T04:25:28Z) - On Projection Robust Optimal Transport: Sample Complexity and Model
Misspecification [101.0377583883137]
射影ロバスト(PR)OTは、2つの測度の間のOTコストを最大化するために、射影可能な$k$次元部分空間を選択する。
私たちの最初の貢献は、PRワッサーシュタイン距離のいくつかの基本的な統計的性質を確立することである。
次に、部分空間を最適化するのではなく平均化することにより、PRW距離の代替として積分PRワッサーシュタイン距離(IPRW)を提案する。
論文 参考訳(メタデータ) (2020-06-22T14:35:33Z) - Projection Robust Wasserstein Distance and Riemannian Optimization [107.93250306339694]
プロジェクション・ソリッドスタイン(PRW)は、ワッサーシュタイン・プロジェクション(WPP)のロバストな変種であることを示す。
本稿では,PRW距離の計算への第一歩として,その理論と実データに関する実験の関連について述べる。
論文 参考訳(メタデータ) (2020-06-12T20:40:22Z) - Discriminator Contrastive Divergence: Semi-Amortized Generative Modeling
by Exploring Energy of the Discriminator [85.68825725223873]
GAN(Generative Adversarial Networks)は、高次元データのモデリングにおいて大きな可能性を秘めている。
本稿では,WGANの識別器の特性を活かした識別器コントラストの多様性について紹介する。
我々は、合成データと実世界の画像生成ベンチマークの両方において、大幅に改善された生成の利点を実証する。
論文 参考訳(メタデータ) (2020-04-05T01:50:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。