Anomaly Detection of UAV State Data Based on Single-class Triangular
Global Alignment Kernel Extreme Learning Machine
- URL: http://arxiv.org/abs/2302.09320v1
- Date: Sat, 18 Feb 2023 12:43:04 GMT
- Title: Anomaly Detection of UAV State Data Based on Single-class Triangular
Global Alignment Kernel Extreme Learning Machine
- Authors: Feisha Hu, Qi Wang, Haijian Shao, Shang Gao and Hualong Yu
- Abstract summary: Unmanned Aerial Vehicles (UAVs) are widely used and meet many demands in military and civilian fields.
We propose algorithms to detect anomalous data collected from drones to improve drone safety.
- Score: 13.068075546963847
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Unmanned Aerial Vehicles (UAVs) are widely used and meet many demands in
military and civilian fields. With the continuous enrichment and extensive
expansion of application scenarios, the safety of UAVs is constantly being
challenged. To address this challenge, we propose algorithms to detect
anomalous data collected from drones to improve drone safety. We deployed a
one-class kernel extreme learning machine (OCKELM) to detect anomalies in drone
data. By default, OCKELM uses the radial basis (RBF) kernel function as the
kernel function of the model. To improve the performance of OCKELM, we choose a
Triangular Global Alignment Kernel (TGAK) instead of an RBF Kernel and
introduce the Fast Independent Component Analysis (FastICA) algorithm to
reconstruct UAV data. Based on the above improvements, we create a novel
anomaly detection strategy FastICA-TGAK-OCELM. The method is finally validated
on the UCI dataset and detected on the Aeronautical Laboratory Failures and
Anomalies (ALFA) dataset. The experimental results show that compared with
other methods, the accuracy of this method is improved by more than 30%, and
point anomalies are effectively detected.
Related papers
- Robust Low-Cost Drone Detection and Classification in Low SNR Environments [0.9087641068861043]
We evaluate various convolutional neural networks (CNNs) for their ability to detect and classify drones.
We demonstrate a low-cost drone detection system using a standard computer, software-defined radio (SDR) and antenna.
arXiv Detail & Related papers (2024-06-26T12:50:55Z) - Clustering-based Learning for UAV Tracking and Pose Estimation [0.0]
This work develops a clustering-based learning detection approach, CL-Det, for UAV tracking and pose estimation using two types of LiDARs.
We first align the timestamps of Livox Avia data and LiDAR 360 data and then separate the point cloud of objects of interest (OOIs) from the environment.
The proposed method shows competitive pose estimation performance and ranks 5th on the final leaderboard of the CVPR 2024 UG2+ Challenge.
arXiv Detail & Related papers (2024-05-27T06:33:25Z) - ARC: A Generalist Graph Anomaly Detector with In-Context Learning [62.202323209244]
ARC is a generalist GAD approach that enables a one-for-all'' GAD model to detect anomalies across various graph datasets on-the-fly.
equipped with in-context learning, ARC can directly extract dataset-specific patterns from the target dataset.
Extensive experiments on multiple benchmark datasets from various domains demonstrate the superior anomaly detection performance, efficiency, and generalizability of ARC.
arXiv Detail & Related papers (2024-05-27T02:42:33Z) - SIRST-5K: Exploring Massive Negatives Synthesis with Self-supervised
Learning for Robust Infrared Small Target Detection [53.19618419772467]
Single-frame infrared small target (SIRST) detection aims to recognize small targets from clutter backgrounds.
With the development of Transformer, the scale of SIRST models is constantly increasing.
With a rich diversity of infrared small target data, our algorithm significantly improves the model performance and convergence speed.
arXiv Detail & Related papers (2024-03-08T16:14:54Z) - MMAUD: A Comprehensive Multi-Modal Anti-UAV Dataset for Modern Miniature
Drone Threats [37.981623262267036]
MMAUD addresses a critical gap in contemporary threat detection methodologies by focusing on drone detection, UAV-type classification, and trajectory estimation.
It offers a unique overhead aerial detection vital for addressing real-world scenarios with higher fidelity than datasets captured on specific vantage points using thermal and RGB.
Our proposed modalities are cost-effective and highly adaptable, allowing users to experiment and implement new UAV threat detection tools.
arXiv Detail & Related papers (2024-02-06T04:57:07Z) - Unraveling the "Anomaly" in Time Series Anomaly Detection: A
Self-supervised Tri-domain Solution [89.16750999704969]
Anomaly labels hinder traditional supervised models in time series anomaly detection.
Various SOTA deep learning techniques, such as self-supervised learning, have been introduced to tackle this issue.
We propose a novel self-supervised learning based Tri-domain Anomaly Detector (TriAD)
arXiv Detail & Related papers (2023-11-19T05:37:18Z) - A Two-Dimensional Deep Network for RF-based Drone Detection and
Identification Towards Secure Coverage Extension [7.717171534776764]
We use Short-Time Fourier Transform to extract two-dimensional features from the raw signals, which contain both time-domain and frequency-domain information.
Then, we employ a Convolutional Neural Network (CNN) built with ResNet structure to achieve multi-class classifications.
Our experimental results show that the proposed ResNet-STFT can achieve higher accuracy and faster convergence on the extended dataset.
arXiv Detail & Related papers (2023-08-26T15:43:39Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
We propose a novel anomaly detection model called Discriminatory Auto-Encoder (DAE)
It uses the baseline of a regular LSTM-based auto-encoder but with several decoders, each getting data of a specific flight phase.
Results show that the DAE achieves better results in both accuracy and speed of detection.
arXiv Detail & Related papers (2021-09-08T14:07:55Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGAN is an unsupervised anomaly detection approach built on Generative Adversarial Networks (GANs)
To capture the temporal correlations of time series, we use LSTM Recurrent Neural Networks as base models for Generators and Critics.
To demonstrate the performance and generalizability of our approach, we test several anomaly scoring techniques and report the best-suited one.
arXiv Detail & Related papers (2020-09-16T15:52:04Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
In this paper, an effective anomaly detection framework is proposed utilizing Bayesian Optimization technique.
The performance of the considered algorithms is evaluated using the ISCX 2012 dataset.
Experimental results show the effectiveness of the proposed framework in term of accuracy rate, precision, low-false alarm rate, and recall.
arXiv Detail & Related papers (2020-08-05T19:29:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.