論文の概要: Understanding how the use of AI decision support tools affect critical
thinking and over-reliance on technology by drug dispensers in Tanzania
- arxiv url: http://arxiv.org/abs/2302.09487v1
- Date: Sun, 19 Feb 2023 05:59:06 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-21 18:08:09.908802
- Title: Understanding how the use of AI decision support tools affect critical
thinking and over-reliance on technology by drug dispensers in Tanzania
- Title(参考訳): AI意思決定支援ツールの使用が、タンザニアにおけるドラッグディスペンサーによる批判的思考と過度信頼にどのように影響するかを理解する
- Authors: Ally Jr Salim, Megan Allen, Kelvin Mariki, Kevin James Masoy and
Jafary Liana
- Abstract要約: 薬局のディスペンサーは、提示された臨床症例のヴィグネットの鑑別診断を決定するとき、AI技術を使用していた。
私たちは、AIがその決定について説明を提供していない場合でも、ディスペンサーがAIによる決定に頼っていたことを発見した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The use of AI in healthcare is designed to improve care delivery and augment
the decisions of providers to enhance patient outcomes. When deployed in
clinical settings, the interaction between providers and AI is a critical
component for measuring and understanding the effectiveness of these digital
tools on broader health outcomes. Even in cases where AI algorithms have high
diagnostic accuracy, healthcare providers often still rely on their experience
and sometimes gut feeling to make a final decision. Other times, providers rely
unquestioningly on the outputs of the AI models, which leads to a concern about
over-reliance on the technology. The purpose of this research was to understand
how reliant drug shop dispensers were on AI-powered technologies when
determining a differential diagnosis for a presented clinical case vignette. We
explored how the drug dispensers responded to technology that is framed as
always correct in an attempt to measure whether they begin to rely on it
without any critical thought of their own. We found that dispensers relied on
the decision made by the AI 25 percent of the time, even when the AI provided
no explanation for its decision.
- Abstract(参考訳): 医療におけるAIの使用は、ケアデリバリーを改善し、患者の成果を高めるための提供者の決定を強化するように設計されている。
臨床環境でのデプロイメントでは、プロバイダとAI間のインタラクションは、これらのデジタルツールがより広範な健康的な結果に与える影響を計測し理解するための重要な要素である。
aiアルゴリズムが診断精度が高い場合でも、医療提供者は自らの経験に頼っ、最終的な判断を直感的に行うことが多い。
その他の場合、プロバイダーはAIモデルのアウトプットに必然的に依存しているため、技術への過度な依存が懸念される。
本研究の目的は,提案する臨床症例の鑑別診断において,薬局ディスペンサーがaiを活用した技術をどのように依存しているかを理解することである。
我々は, 薬物ディスペンサーが常に正しい技術にどう反応するかを検討し, 自己の批判的な考えを伴わずにその技術に頼り始めるかどうかを計測した。
私たちは、AIがその決定について説明を提供していない場合でも、ディスペンサーがAIによる決定に頼っていたことを発見した。
関連論文リスト
- Interactive Example-based Explanations to Improve Health Professionals' Onboarding with AI for Human-AI Collaborative Decision Making [2.964175945467257]
成長する研究は、人間とAIの協調的な意思決定において、ユーザの意思決定フェーズにおけるAI説明の使用について調査している。
以前の研究では、間違ったAI出力に対する過信の問題が見つかった。
医療従事者のAIによるオフボード化を改善するために,インタラクティブな例に基づく説明を提案する。
論文 参考訳(メタデータ) (2024-09-24T07:20:09Z) - Combining AI Control Systems and Human Decision Support via Robustness and Criticality [53.10194953873209]
我々は、逆説(AE)の方法論を最先端の強化学習フレームワークに拡張する。
学習したAI制御システムは、敵のタンパリングに対する堅牢性を示す。
トレーニング/学習フレームワークでは、この技術は人間のインタラクションを通じてAIの決定と説明の両方を改善することができる。
論文 参考訳(メタデータ) (2024-07-03T15:38:57Z) - Explainable AI Enhances Glaucoma Referrals, Yet the Human-AI Team Still Falls Short of the AI Alone [6.740852152639975]
各種のAI説明は、提供者が即時または緊急の専門紹介を必要とする患者を区別するのにどのように役立つかを検討する。
我々は、高リスク患者を特定するためのプロキシとして、通常のアイケアデータから緑内障手術のニーズを予測するための説明可能なAIアルゴリズムを構築した。
本研究は,本質的・ポストホックな説明性を取り入れ,ヒト-AIチームのパフォーマンスを評価するために,眼科医とオンライン研究を行った。
論文 参考訳(メタデータ) (2024-05-24T03:01:20Z) - The Limits of Perception: Analyzing Inconsistencies in Saliency Maps in XAI [0.0]
説明可能な人工知能(XAI)は、AIの意思決定プロセスの解明に不可欠である。
ブラックボックス」として機能し、その理由が曖昧でアクセスできないため、誤診のリスクが高まる。
この透明性へのシフトは、単に有益であるだけでなく、医療におけるAI統合の責任を負うための重要なステップでもある。
論文 参考訳(メタデータ) (2024-03-23T02:15:23Z) - FUTURE-AI: International consensus guideline for trustworthy and deployable artificial intelligence in healthcare [73.78776682247187]
医療AIに関連する技術的、臨床的、倫理的、法的リスクに関する懸念が高まっている。
この研究は、Future-AIガイドラインを、医療における信頼できるAIツールの開発とデプロイを導くための最初の国際コンセンサスフレームワークとして説明している。
論文 参考訳(メタデータ) (2023-08-11T10:49:05Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
この分野でのAIのメリット、課題、欠点についてレビューする。
データ拡張、説明可能なAIの使用、従来の実験手法とAIの統合についても論じている。
論文 参考訳(メタデータ) (2022-12-08T23:23:39Z) - What Do End-Users Really Want? Investigation of Human-Centered XAI for
Mobile Health Apps [69.53730499849023]
説明可能なAI(XAI)を評価するために,ユーザ中心のペルソナ概念を提案する。
分析の結果,ユーザの人口統計や性格,説明のタイプ,影響説明の嗜好が示された。
私たちの洞察は、対話的で人間中心のXAIを実践的な応用に近づけます。
論文 参考訳(メタデータ) (2022-10-07T12:51:27Z) - Who Goes First? Influences of Human-AI Workflow on Decision Making in
Clinical Imaging [24.911186503082465]
本研究は, 放射線医学における診断セッション開始時と, 放射線科医の仮決定後のAI支援の効果について検討した。
その結果、AI推論をレビューする前に仮回答を登録するよう求められている参加者は、アドバイスが正確かどうかに関わらず、AIに同意する確率が低く、AIと意見の相違がある場合には、同僚の第二の意見を求める確率が低いことがわかった。
論文 参考訳(メタデータ) (2022-05-19T16:59:25Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2)は、AIレコメンデーションにユーザの信頼度を明確に定量化し視覚化する。
これにより、AIシステムの予測を調べてテストすることで、システムの意思決定に対する信頼の基盤を確立することができる。
論文 参考訳(メタデータ) (2022-01-26T18:53:09Z) - Explainable AI for medical imaging: Explaining pneumothorax diagnoses
with Bayesian Teaching [4.707325679181196]
ベイズ教養に基づく説明の導入と評価を行う。
医療専門家が説明に晒すことで、AIの診断決定を予測できることがわかりました。
これらの結果から,説明可能なAIは医用画像における人間とAIの協調を支援するのに有用であることが示唆された。
論文 参考訳(メタデータ) (2021-06-08T20:49:11Z) - Effect of Confidence and Explanation on Accuracy and Trust Calibration
in AI-Assisted Decision Making [53.62514158534574]
ケース固有のモデル情報を明らかにする特徴が、信頼度を調整し、人間とAIのジョイントパフォーマンスを向上させることができるかどうかを検討する。
信頼スコアは、AIモデルに対する人々の信頼を校正するのに役立ちますが、信頼の校正だけでは、AI支援による意思決定を改善するには不十分です。
論文 参考訳(メタデータ) (2020-01-07T15:33:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。