論文の概要: Free-Form Variational Inference for Gaussian Process State-Space Models
- arxiv url: http://arxiv.org/abs/2302.09921v1
- Date: Mon, 20 Feb 2023 11:34:16 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-21 15:32:39.002345
- Title: Free-Form Variational Inference for Gaussian Process State-Space Models
- Title(参考訳): ガウス過程状態空間モデルに対する自由形式変分推論
- Authors: Xuhui Fan, Edwin V. Bonilla, Terence J. O'Kane, Scott A. Sisson
- Abstract要約: ベイズGPSSMにおける新しい推論法を提案する。
本手法はハミルトニアンモンテカルロの誘導による自由形式変分推論に基づく。
提案手法は, 競合する手法よりも, 遷移力学や潜伏状態をより正確に学習できることを示す。
- 参考スコア(独自算出の注目度): 21.644570034208506
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Gaussian process state-space models (GPSSMs) provide a principled and
flexible approach to modeling the dynamics of a latent state, which is observed
at discrete-time points via a likelihood model. However, inference in GPSSMs is
computationally and statistically challenging due to the large number of latent
variables in the model and the strong temporal dependencies between them. In
this paper, we propose a new method for inference in Bayesian GPSSMs, which
overcomes the drawbacks of previous approaches, namely over-simplified
assumptions, and high computational requirements. Our method is based on
free-form variational inference via stochastic gradient Hamiltonian Monte Carlo
within the inducing-variable formalism. Furthermore, by exploiting our proposed
variational distribution, we provide a collapsed extension of our method where
the inducing variables are marginalized analytically. We also showcase results
when combining our framework with particle MCMC methods. We show that, on six
real-world datasets, our approach can learn transition dynamics and latent
states more accurately than competing methods.
- Abstract(参考訳): ガウス過程状態空間モデル(英: gaussian process state-space model、gpssms)は、潜在状態のダイナミクスをモデル化するための原理的かつ柔軟なアプローチである。
しかし、GPSSMの推論は、モデル内の大量の潜伏変数とそれらの間の強い時間的依存関係のために、計算的に、統計的に困難である。
本稿では,従来の手法,すなわち過剰に単純化された仮定と高い計算要求の欠点を克服したベイズGPSSMの推論手法を提案する。
本手法は帰納的形式論における確率勾配ハミルトンモンテカルロによる自由形式変分推論に基づく。
さらに,提案した変分分布を利用して,帰納変数を解析的に疎外化する手法の拡張を行う。
また,本手法を粒子MCMC法と組み合わせた結果を示す。
実世界の6つのデータセットにおいて、我々のアプローチは競合する手法よりもより正確に遷移力学や潜伏状態を学ぶことができることを示す。
関連論文リスト
- Latent Space Energy-based Neural ODEs [73.01344439786524]
本稿では,連続時間シーケンスデータを表現するために設計された深部力学モデルの新しいファミリを紹介する。
マルコフ連鎖モンテカルロの最大推定値を用いてモデルを訓練する。
発振システム、ビデオ、実世界の状態シーケンス(MuJoCo)の実験は、学習可能なエネルギーベース以前のODEが既存のものより優れていることを示している。
論文 参考訳(メタデータ) (2024-09-05T18:14:22Z) - Fully Bayesian Differential Gaussian Processes through Stochastic Differential Equations [7.439555720106548]
本稿では、カーネルハイパーパラメータを確率変数として扱い、結合微分方程式(SDE)を構築して、その後部分布と誘導点を学習する完全ベイズ的手法を提案する。
提案手法は,SDE法による結合変数による時間変化,包括的,現実的な後部近似を提供する。
我々の研究はベイズ的推論を推し進めるためのエキサイティングな研究の道を開き、継続的なガウス的プロセスのための強力なモデリングツールを提供する。
論文 参考訳(メタデータ) (2024-08-12T11:41:07Z) - Linear Noise Approximation Assisted Bayesian Inference on Mechanistic Model of Partially Observed Stochastic Reaction Network [2.325005809983534]
本稿では、部分的に観察された酵素反応ネットワーク(SRN)に対する効率的なベイズ推論手法を開発する。
線形雑音近似(LNA)メタモデルを提案する。
マルコフ・チェイン・モンテカルロの収束を高速化するために、導出確率の勾配を利用して効率的な後方サンプリング手法を開発した。
論文 参考訳(メタデータ) (2024-05-05T01:54:21Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
我々は,計算効率が高く正確なモデルパラメータ推定とベイジアン潜在状態推定を提供する変分連続モンテカルロ法(VSMC)を構築した。
オンラインVSMCは、パラメータ推定と粒子提案適応の両方を効率よく、完全にオンザフライで実行することができる。
論文 参考訳(メタデータ) (2023-12-19T21:45:38Z) - Distributionally Robust Model-based Reinforcement Learning with Large
State Spaces [55.14361269378122]
強化学習における3つの大きな課題は、大きな状態空間を持つ複雑な力学系、コストのかかるデータ取得プロセス、トレーニング環境の展開から現実の力学を逸脱させることである。
広範に用いられているKullback-Leibler, chi-square, および全変分不確実性集合の下で, 連続状態空間を持つ分布ロバストなマルコフ決定過程について検討した。
本稿では,ガウス過程と最大分散削減アルゴリズムを用いて,多出力名目遷移力学を効率的に学習するモデルベースアプローチを提案する。
論文 参考訳(メタデータ) (2023-09-05T13:42:11Z) - Towards Efficient Modeling and Inference in Multi-Dimensional Gaussian
Process State-Space Models [11.13664702335756]
我々は,高次元潜在状態空間における遷移関数を効率的にモデル化するために,効率的な変換ガウス過程(ETGP)をGPSSMに統合することを提案する。
また,パラメータ数および計算複雑性の観点から,既存の手法を超越した変分推論アルゴリズムを開発した。
論文 参考訳(メタデータ) (2023-09-03T04:34:33Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
モデルに基づく強化学習のサンプル効率を改善するために、潜在変数モデルが学習、計画、探索をいかに促進するかは理論上、実証上、不明である。
状態-作用値関数に対する潜在変数モデルの表現ビューを提供する。これは、抽出可能な変分学習アルゴリズムと楽観主義/悲観主義の原理の効果的な実装の両方を可能にする。
特に,潜伏変数モデルのカーネル埋め込みを組み込んだUPB探索を用いた計算効率の良い計画アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-12-17T00:26:31Z) - Likelihood-Free Inference in State-Space Models with Unknown Dynamics [71.94716503075645]
本研究では、状態空間モデルにおいて、観測をシミュレートすることしかできず、遷移ダイナミクスが不明な潜在状態の推測と予測を行う手法を提案する。
本研究では,限られた数のシミュレーションで状態予測と状態予測を行う手法を提案する。
論文 参考訳(メタデータ) (2021-11-02T12:33:42Z) - Variational Inference for Continuous-Time Switching Dynamical Systems [29.984955043675157]
従属拡散過程を変調したマルコフジャンプ過程に基づくモデルを提案する。
我々は,新しい連続時間変動推定アルゴリズムを開発した。
モデル仮定と実世界の実例に基づいて,我々のアルゴリズムを広範囲に評価する。
論文 参考訳(メタデータ) (2021-09-29T15:19:51Z) - Self-Supervised Hybrid Inference in State-Space Models [0.0]
我々は、潜在空間における非線形高階マルコフ連鎖を許容する状態空間モデルにおいて近似推論を行う。
生成モデルや監督のパラメータ化を、未破損の観測や真理潜伏状態による追加のパラメータ化に頼ってはいない。
カオスロレンツシステムにおいて,完全教師付きアプローチと比較して競合的な結果を得るとともに,変分推論に基づく手法よりも優れることを示す。
論文 参考訳(メタデータ) (2021-07-28T13:26:14Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
実験観測に基づくモデルのパラメータを推定することは、科学的方法の中心である。
特に困難な設定は、モデルが強く不確定であるとき、すなわち、パラメータの異なるセットが同一の観測をもたらすときである。
本稿では,グローバルパラメータを共有する観測の補助的セットによって伝達される付加情報を利用して,その不確定性を破る手法を提案する。
論文 参考訳(メタデータ) (2021-02-12T12:23:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。