論文の概要: Gaussian kernels on non-simply-connected closed Riemannian manifolds are
never positive definite
- arxiv url: http://arxiv.org/abs/2303.06558v1
- Date: Sun, 12 Mar 2023 03:47:17 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-14 18:13:58.250631
- Title: Gaussian kernels on non-simply-connected closed Riemannian manifolds are
never positive definite
- Title(参考訳): 非サイン連結閉リーマン多様体上のガウス核は必ずしも正定値ではない
- Authors: Siran Li
- Abstract要約: Gaussian kernel $expleft-lambda d_g2(bullet, bullet)right$ は任意の $lambda > 0$ に対して正定値ではない。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We show that the Gaussian kernel $\exp\left\{-\lambda d_g^2(\bullet,
\bullet)\right\}$ on any non-simply-connected closed Riemannian manifold
$(\mathcal{M},g)$, where $d_g$ is the geodesic distance, is not positive
definite for any $\lambda > 0$, combining analyses in the recent preprint~[9]
by Da Costa--Mostajeran--Ortega and classical comparison theorems in Riemannian
geometry.
- Abstract(参考訳): ガウス核 $\exp\left\{-\lambda d_g^2(\bullet, \bullet)\right\}$ on any-simply-connected closed riemann manifold $(\mathcal{m},g)$, ここで $d_g$ は測地距離であるが、任意の$\lambda > 0$ に対して正定値ではなく、da costa-mostajeran-ortega による最近の preprint~[9] の解析と、リーマン幾何学における古典比較定理を組み合わせる。
関連論文リスト
- Efficient Sampling on Riemannian Manifolds via Langevin MCMC [51.825900634131486]
本稿では,Gibs 分布 $d pi* = eh d vol_g$ over aian manifold $M$ via (geometric) Langevin MCMC。
この結果は、$pi*$ が非指数的であり、$Mh$ が負のリッチ曲率を持つような一般的な設定に適用できる。
論文 参考訳(メタデータ) (2024-02-15T22:59:14Z) - Invariant kernels on Riemannian symmetric spaces: a harmonic-analytic approach [6.5497574505866885]
この研究は、古典ガウス核が非ユークリッド対称空間上で定義されるとき、パラメータの選択に対して正定でないことを証明することを目的としている。
新しい結果は、対称空間上の不変核の研究の青写真を作った。
論文 参考訳(メタデータ) (2023-10-30T05:06:52Z) - A Unified Framework for Uniform Signal Recovery in Nonlinear Generative
Compressed Sensing [68.80803866919123]
非線形測定では、ほとんどの先行結果は一様ではない、すなわち、すべての$mathbfx*$に対してではなく、固定された$mathbfx*$に対して高い確率で保持される。
本フレームワークはGCSに1ビット/一様量子化観測と単一インデックスモデルを標準例として適用する。
また、指標集合が計量エントロピーが低い製品プロセスに対して、より厳密な境界を生み出す濃度不等式も開発する。
論文 参考訳(メタデータ) (2023-09-25T17:54:19Z) - Curvature-Independent Last-Iterate Convergence for Games on Riemannian
Manifolds [77.4346324549323]
本研究では, 多様体の曲率に依存しないステップサイズが, 曲率非依存かつ直線的最終点収束率を達成することを示す。
我々の知る限りでは、曲率非依存率や/または最終点収束の可能性はこれまでに検討されていない。
論文 参考訳(メタデータ) (2023-06-29T01:20:44Z) - Accelerated Methods for Riemannian Min-Max Optimization Ensuring Bounded
Geometric Penalties [21.141544548229774]
我々は$min_x max_y f(x, y) という形式で、$mathcalN$ は Hadamard である。
我々は、勾配収束定数を減少させることにより、グローバルな関心が加速されることを示す。
論文 参考訳(メタデータ) (2023-05-25T15:43:07Z) - A Nearly Tight Bound for Fitting an Ellipsoid to Gaussian Random Points [50.90125395570797]
このことは対数的因子の中でのciteSaundersonCPW12 の予想をほぼ成立させる。
後者の予想は、機械学習とある種の統計上の問題に対する2乗下界との結びつきから、過去10年間で大きな注目を集めている。
論文 参考訳(メタデータ) (2022-12-21T17:48:01Z) - Strong uniform convergence of Laplacians of random geometric and
directed kNN graphs on compact manifolds [0.0]
この作用素の微分ラプラス・ベルトラミ作用素へのほぼ確実に一様収束は、$n$が無限大の傾向にあるときに研究する。
この研究は、過去15年間の既知の結果を拡張した。
論文 参考訳(メタデータ) (2022-12-20T14:31:06Z) - First-Order Algorithms for Min-Max Optimization in Geodesic Metric
Spaces [93.35384756718868]
min-maxアルゴリズムはユークリッド設定で解析されている。
指数関数法 (RCEG) が線形速度で最終収束を補正したことを証明した。
論文 参考訳(メタデータ) (2022-06-04T18:53:44Z) - Small Covers for Near-Zero Sets of Polynomials and Learning Latent
Variable Models [56.98280399449707]
我々は、s$ of cardinality $m = (k/epsilon)o_d(k1/d)$ に対して $epsilon$-cover が存在することを示す。
構造的結果に基づいて,いくつかの基本的高次元確率モデル隠れ変数の学習アルゴリズムを改良した。
論文 参考訳(メタデータ) (2020-12-14T18:14:08Z) - Convergence Analysis of Riemannian Stochastic Approximation Schemes [39.32179384256228]
本稿では,最適化問題に取り組むための相関近似 (SA) スキームのクラスを解析する。
得られた条件は, 従来よりかなり軽度であることを示す。
第3に、平均場関数を小さなバイアスにしか推定できない場合、および/または、サンプルが鎖から引き出される場合を考える。
論文 参考訳(メタデータ) (2020-05-27T11:24:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。