論文の概要: Characteristic Function of the Tsallis $q$-Gaussian and Its Applications
in Measurement and Metrology
- arxiv url: http://arxiv.org/abs/2303.08615v1
- Date: Wed, 15 Mar 2023 13:42:35 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-16 18:06:32.948835
- Title: Characteristic Function of the Tsallis $q$-Gaussian and Its Applications
in Measurement and Metrology
- Title(参考訳): tsallis $q$-gaussianの特性関数とその計測・計測への応用
- Authors: Viktor Witkovsk\'y
- Abstract要約: ツァリス$q$-ガウス分布は標準ガウス分布の強力な一般化である。
これは$q$-distributionファミリーに属し、非付加エントロピーによって特徴づけられる。
本稿では,独立な$q$-ガウス確率変数の線形結合の特性について述べる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Tsallis $q$-Gaussian distribution is a powerful generalization of the
standard Gaussian distribution and is commonly used in various fields,
including non-extensive statistical mechanics, financial markets, and image
processing. It belongs to the $q$-distribution family, which is characterized
by a non-additive entropy. Due to their versatility and practicality,
$q$-Gaussians are a natural choice for modeling input quantities in measurement
models. This paper presents the characteristic function of a linear combination
of independent $q$-Gaussian random variables and proposes a numerical method
for its inversion. The proposed technique enables the assessment of the
probability distribution of output quantities in linear measurement models and
the conduct of uncertainty analysis in metrology.
- Abstract(参考訳): tsallis $q$-gaussian 分布は標準ガウス分布の強力な一般化であり、非拡張的な統計力学、金融市場、画像処理など様々な分野で広く使われている。
これは$q$-distributionファミリーに属し、非付加エントロピーによって特徴づけられる。
汎用性と実用性のため、$q$-Gaussian は測定モデルの入力量をモデル化するための自然な選択である。
本稿では,独立な$q$-Gauss的確率変数の線形結合の特性関数を提案し,その逆解析法を提案する。
提案手法は,線形計測モデルにおける出力量の確率分布と,計測における不確実性解析の実施を可能にする。
関連論文リスト
- Ensemble Multi-Quantile: Adaptively Flexible Distribution Prediction for
Uncertainty Quantification [4.728311759896569]
本稿では,機械学習における不確実性を定量化するための,新しい,簡潔かつ効果的なアプローチを提案する。
回帰タスクで$mathbbP(mathbfy|mathbfX=x)$に対して適応的に柔軟な分布予測を組み込む。
論文 参考訳(メタデータ) (2022-11-26T11:45:32Z) - Wrapped Distributions on homogeneous Riemannian manifolds [58.720142291102135]
パラメータ、対称性、モダリティなどの分布の性質の制御は、フレキシブルな分布の族を生み出す。
変動型オートエンコーダと潜在空間ネットワークモデル内で提案した分布を利用して,我々のアプローチを実証的に検証する。
論文 参考訳(メタデータ) (2022-04-20T21:25:21Z) - Efficient CDF Approximations for Normalizing Flows [64.60846767084877]
正規化フローの微分同相性に基づいて、閉領域上の累積分布関数(CDF)を推定する。
一般的なフローアーキテクチャとUCIデータセットに関する実験は,従来の推定器と比較して,サンプル効率が著しく向上したことを示している。
論文 参考訳(メタデータ) (2022-02-23T06:11:49Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
脳の灰白質細胞構造の特徴は、体密度と体積に定量的に敏感であり、dMRIでは未解決の課題である。
我々は新しいフォワードモデル、特に新しい方程式系を提案し、比較的スパースなb殻を必要とする。
次に,提案手法を逆転させるため,確率自由推論 (LFI) として知られるベイズ解析から最新のツールを適用した。
論文 参考訳(メタデータ) (2021-11-15T09:08:27Z) - A Random Matrix Perspective on Random Tensors [40.89521598604993]
与えられたランダムテンソルの収縮から生じるランダム行列のスペクトルについて検討する。
本手法は,ML問題の局所的な最大値の未知な特徴を与える。
我々のアプローチは万能であり、非対称、非ガウス的、高階的など他のモデルにも拡張できる。
論文 参考訳(メタデータ) (2021-08-02T10:42:22Z) - Bayesian Inference for Gamma Models [4.189643331553922]
正規分散平均混合の理論を用いて、ガンマ関数を含むモデルに対するデータ拡張スキームを導出する。
本稿では, ガンマ形状推定, 負二項回帰, ディリクレ割り当てなど, 多数の例について考察する。
論文 参考訳(メタデータ) (2021-06-03T14:58:39Z) - Learning with Density Matrices and Random Features [62.997667081978825]
密度行列は、量子系の統計状態を記述する。
本稿では,機械学習モデル構築のためのビルディングブロックとして,密度行列をどのように利用できるかを検討する。
論文 参考訳(メタデータ) (2021-02-08T17:54:59Z) - Characterizations of non-normalized discrete probability distributions
and their application in statistics [0.0]
これらの分布を識別する離散確率法則の質量関数について明示的な式を導出する。
我々の特徴づけ、従ってそれらの上に構築された応用は、確率法則の正規化定数に関する知識を一切必要としない。
論文 参考訳(メタデータ) (2020-11-09T12:08:12Z) - Pathwise Conditioning of Gaussian Processes [72.61885354624604]
ガウス過程後部をシミュレーションするための従来のアプローチでは、有限個の入力位置のプロセス値の限界分布からサンプルを抽出する。
この分布中心の特徴づけは、所望のランダムベクトルのサイズで3次スケールする生成戦略をもたらす。
条件付けのこのパスワイズ解釈が、ガウス過程の後部を効率的にサンプリングするのに役立てる近似の一般族をいかに生み出すかを示す。
論文 参考訳(メタデータ) (2020-11-08T17:09:37Z) - Flexible mean field variational inference using mixtures of
non-overlapping exponential families [6.599344783327053]
標準平均場変動推論を用いることで、疎性誘導前のモデルに対して妥当な結果が得られないことを示す。
拡散指数族と 0 の点質量の任意の混合が指数族を形成することを示す。
論文 参考訳(メタデータ) (2020-10-14T01:46:56Z) - Generalized Sliced Distances for Probability Distributions [47.543990188697734]
我々は、一般化スライス確率測定(GSPM)と呼ばれる、幅広い確率測定値の族を紹介する。
GSPMは一般化されたラドン変換に根付いており、ユニークな幾何学的解釈を持つ。
GSPMに基づく勾配流を生成モデル応用に適用し、軽度な仮定の下では、勾配流が大域的最適に収束することを示す。
論文 参考訳(メタデータ) (2020-02-28T04:18:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。