論文の概要: Bridging adaptive management and reinforcement learning for more robust
decisions
- arxiv url: http://arxiv.org/abs/2303.08731v1
- Date: Wed, 15 Mar 2023 16:14:12 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-16 13:04:02.869280
- Title: Bridging adaptive management and reinforcement learning for more robust
decisions
- Title(参考訳): より堅牢な意思決定のためのブリッジ適応管理と強化学習
- Authors: Melissa Chapman, Lily Xu, Marcus Lapeyrolerie, Carl Boettiger
- Abstract要約: 我々は, 環境システム管理のための堅牢な戦略を, 極めて不確実な状況下で構築する上で, 強化学習がいかに役立つかを示す。
我々は,環境管理とコンピュータ科学が,経験に基づく意思決定の実践,約束,危険について互いに学び合うことを示唆している。
- 参考スコア(独自算出の注目度): 6.152873761869356
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: From out-competing grandmasters in chess to informing high-stakes healthcare
decisions, emerging methods from artificial intelligence are increasingly
capable of making complex and strategic decisions in diverse, high-dimensional,
and uncertain situations. But can these methods help us devise robust
strategies for managing environmental systems under great uncertainty? Here we
explore how reinforcement learning, a subfield of artificial intelligence,
approaches decision problems through a lens similar to adaptive environmental
management: learning through experience to gradually improve decisions with
updated knowledge. We review where reinforcement learning (RL) holds promise
for improving evidence-informed adaptive management decisions even when
classical optimization methods are intractable. For example, model-free deep RL
might help identify quantitative decision strategies even when models are
nonidentifiable. Finally, we discuss technical and social issues that arise
when applying reinforcement learning to adaptive management problems in the
environmental domain. Our synthesis suggests that environmental management and
computer science can learn from one another about the practices, promises, and
perils of experience-based decision-making.
- Abstract(参考訳): チェスの卓越したグランドマスターから、高度なヘルスケア決定を伝えるまで、人工知能の新しい手法は、多様で高次元で不確実な状況において、複雑で戦略的決定を行う能力がますます高まっている。
しかし、これらの手法は環境システムの不確実性が高い環境管理のための堅牢な戦略を創出するのに役立ちますか。
本稿では,人工知能のサブフィールドである強化学習が,適応型環境管理と同様のレンズを通して意思決定問題にどのようにアプローチするかを考察する。
古典的最適化手法が難解であっても,強化学習(rl)がエビデンスを損なう適応的管理判断を改善する可能性について検討する。
例えば、モデルフリーのdeep rlは、モデルが識別できない場合でも定量的な決定戦略を特定するのに役立つ。
最後に,環境領域における適応管理問題に強化学習を適用する際に生じる技術的・社会的問題について議論する。
我々の合成は,環境管理とコンピュータ科学が,経験に基づく意思決定の実践,約束,周辺について相互に学習できることを示唆する。
関連論文リスト
- Explainable Data-Driven Optimization: From Context to Decision and Back
Again [76.84947521482631]
データ駆動最適化では、コンテキスト情報と機械学習アルゴリズムを使用して、不確実なパラメータによる決定問題の解決策を見つける。
本稿では,データ駆動型問題に対する解法を説明するために,対実的説明手法を提案する。
在庫管理やルーティングといった運用管理における重要な問題を説明することで,我々のアプローチを実証する。
論文 参考訳(メタデータ) (2023-01-24T15:25:16Z) - On solving decision and risk management problems subject to uncertainty [91.3755431537592]
不確実性は意思決定とリスク管理において広範囲にわたる課題である。
本稿では,このような戦略を体系的に理解し,その適用範囲を判断し,それらをうまく活用するための枠組みを開発する。
論文 参考訳(メタデータ) (2023-01-18T19:16:23Z) - Inverse Online Learning: Understanding Non-Stationary and Reactionary
Policies [79.60322329952453]
エージェントが意思決定を行う方法の解釈可能な表現を開発する方法を示す。
一連の軌跡に基づく意思決定プロセスを理解することにより,このオンライン学習問題に対して,政策推論問題を逆問題とみなした。
本稿では、エージェントがそれらを更新するプロセスと並行して、その影響を遡及的に推定する実用的なアルゴリズムを提案する。
UNOSの臓器提供受諾決定の分析に応用することで、我々のアプローチは意思決定プロセスを管理する要因や時間とともにどのように変化するかに、貴重な洞察をもたらすことができることを実証する。
論文 参考訳(メタデータ) (2022-03-14T17:40:42Z) - Decision Rule Elicitation for Domain Adaptation [93.02675868486932]
ヒトインザループ機械学習は、専門家からラベルを引き出すために人工知能(AI)で広く使用されています。
この作業では、専門家が意思決定を説明する決定ルールを作成できるようにします。
決定規則の適用はアルゴリズムのドメイン適応を改善し、専門家の知識をAIモデルに広めるのに役立つことを示す。
論文 参考訳(メタデータ) (2021-02-23T08:07:22Z) - Learning-Driven Decision Mechanisms in Physical Layer: Facts,
Challenges, and Remedies [23.446736654473753]
本稿では, 物理層に共通する仮定を, 実用システムとの相違点を強調するために紹介する。
解決策として,実装手順と課題を考慮して学習アルゴリズムを検討する。
論文 参考訳(メタデータ) (2021-02-14T22:26:44Z) - Improving Human Decision-Making by Discovering Efficient Strategies for
Hierarchical Planning [0.6882042556551609]
計算資源が限られているため、効率的な計画戦略が必要です。
これらの戦略を計算する能力は、以前は非常に小さく、非常に単純な計画タスクに限られていました。
本稿では,この制限を克服できる認知型強化学習手法を提案する。
論文 参考訳(メタデータ) (2021-01-31T19:46:00Z) - Deep Reinforcement Learning amidst Lifelong Non-Stationarity [67.24635298387624]
政治以外のRLアルゴリズムは、寿命の長い非定常性に対処できることを示す。
提案手法は潜在変数モデルを用いて,現在および過去の経験から環境表現を学習する。
また, 生涯の非定常性を示すシミュレーション環境もいくつか導入し, 環境変化を考慮しないアプローチを著しく上回っていることを実証的に確認した。
論文 参考訳(メタデータ) (2020-06-18T17:34:50Z) - Automatic Discovery of Interpretable Planning Strategies [9.410583483182657]
我々は、慣用的ポリシーを単純かつ解釈可能な記述に変換する方法であるAI-Interpretを紹介する。
フローチャートとしてAI-Interpretが生み出す決定ルールを守れば、人々の計画戦略や意思決定は大幅に改善される。
論文 参考訳(メタデータ) (2020-05-24T12:24:52Z) - Data-driven control of micro-climate in buildings: an event-triggered
reinforcement learning approach [56.22460188003505]
半マルコフ決定過程に基づく微小気候制御問題を定式化する。
建物内の微小気候のイベントトリガー制御のための2つの学習アルゴリズムを提案する。
スマートなサーモスタットを設計することで,提案手法の有効性を示す。
論文 参考訳(メタデータ) (2020-01-28T18:20:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。