論文の概要: Real-time elastic partial shape matching using a neural network-based
adjoint method
- arxiv url: http://arxiv.org/abs/2303.09343v1
- Date: Thu, 16 Mar 2023 14:23:34 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-17 15:11:36.589822
- Title: Real-time elastic partial shape matching using a neural network-based
adjoint method
- Title(参考訳): ニューラルネットワークに基づく随伴法による実時間弾性部分形状マッチング
- Authors: Alban Odot (MIMESIS), Guillaume Mestdagh (IRMA, MIMESIS), Yannick
Privat, St\'ephane Cotin (MIMESIS)
- Abstract要約: 非線形変形体の部分的な表面マッチングは、構造変形を管理するためにエンジニアリングにおいて不可欠である。
本稿では,ニューラルネットワークを用いた最適制御問題として登録問題を定式化することを提案する。
本プロセスは,複数桁の桁数で計算速度を向上するとともに,許容範囲の登録誤差を提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Surface matching usually provides significant deformations that can lead to
structural failure due to the lack of physical policy. In this context, partial
surface matching of non-linear deformable bodies is crucial in engineering to
govern structure deformations. In this article, we propose to formulate the
registration problem as an optimal control problem using an artificial neural
network where the unknown is the surface force distribution that applies to the
object and the resulting deformation computed using a hyper-elastic model. The
optimization problem is solved using an adjoint method where the hyper-elastic
problem is solved using the feed-forward neural network and the adjoint problem
is obtained through the backpropagation of the network. Our process improves
the computation speed by multiple orders of magnitude while providing
acceptable registration errors.
- Abstract(参考訳): 表面マッチングは、通常、物理的ポリシーの欠如による構造的故障につながる大きな変形をもたらす。
この文脈では、非線形変形可能な物体の部分的表面マッチングは、構造変形を制御する工学において不可欠である。
本稿では,物体に作用する表面力分布と超弾性モデルを用いて計算した結果の変形が未知である人工ニューラルネットワークを用いて,最適制御問題として登録問題を定式化することを提案する。
この最適化問題は、フィードフォワードニューラルネットワークを用いて超弾性問題を解き、ネットワークのバックプロパゲーションにより随伴問題を得る随伴法を用いて解く。
このプロセスは、許容可能な登録エラーを提供しながら、計算速度を複数桁改善する。
関連論文リスト
- Physics-aware deep learning framework for linear elasticity [0.0]
本稿では,線形連続弾性問題に対する効率的で堅牢なデータ駆動型ディープラーニング(DL)計算フレームワークを提案する。
フィールド変数の正確な表現のために,多目的損失関数を提案する。
弾性に対するAirimaty解やKirchhoff-Loveプレート問題を含むいくつかのベンチマーク問題を解く。
論文 参考訳(メタデータ) (2023-02-19T20:33:32Z) - Accelerated Solutions of Coupled Phase-Field Problems using Generative
Adversarial Networks [0.0]
我々は,エンコーダデコーダに基づく条件付きGeneLSTM層を用いたニューラルネットワークに基づく新しいフレームワークを開発し,Cahn-Hilliardマイクロ構造方程式を解く。
トレーニングされたモデルはメッシュとスケールに依存しないため、効果的なニューラル演算子としての応用が保証される。
論文 参考訳(メタデータ) (2022-11-22T08:32:22Z) - LordNet: Learning to Solve Parametric Partial Differential Equations
without Simulated Data [63.55861160124684]
本稿では,離散化されたPDEによって構築された平均2乗残差(MSR)損失から,ニューラルネットワークが直接物理を学習する一般データ自由パラダイムを提案する。
具体的には,低ランク分解ネットワーク(LordNet)を提案する。
Poisson方程式とNavier-Stokes方程式を解く実験は、MSR損失による物理的制約がニューラルネットワークの精度と能力を向上させることを実証している。
論文 参考訳(メタデータ) (2022-06-19T14:41:08Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
我々は,物理インフォームドニューラルネットワークのトレーニングを著しく高速化する新しい手法を開発した。
特に、ガウス滑らか化モデルによりPDE解をパラメータ化し、スタインの恒等性から導かれる2階微分がバックプロパゲーションなしで効率的に計算可能であることを示す。
実験の結果,提案手法は通常のPINN訓練に比べて2桁の精度で競合誤差を実現できることがわかった。
論文 参考訳(メタデータ) (2022-02-18T18:07:54Z) - Physics informed neural networks for continuum micromechanics [68.8204255655161]
近年,応用数学や工学における多種多様な問題に対して,物理情報ニューラルネットワークの適用が成功している。
グローバルな近似のため、物理情報ニューラルネットワークは、最適化によって局所的な効果と強い非線形解を表示するのに困難である。
実世界の$mu$CT-Scansから得られた不均一構造における非線形応力, 変位, エネルギー場を, 正確に解くことができる。
論文 参考訳(メタデータ) (2021-10-14T14:05:19Z) - Physics-informed neural network simulation of multiphase poroelasticity
using stress-split sequential training [0.0]
本稿では、弾性ネットワークに基づく偏微分方程式(PDE)に支配される問題を解くための枠組みを提案する。
この手法は, ポロシ, バリ・シエの注入-生産問題, および2相排水問題の解法に収束する。
論文 参考訳(メタデータ) (2021-10-06T20:09:09Z) - Non-Gradient Manifold Neural Network [79.44066256794187]
ディープニューラルネットワーク(DNN)は通常、勾配降下による最適化に数千のイテレーションを要します。
非次最適化に基づく新しい多様体ニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2021-06-15T06:39:13Z) - Optimal Transport Based Refinement of Physics-Informed Neural Networks [0.0]
我々は、最適輸送(OT)の概念に基づく偏微分方程式(PDE)の解法として、よく知られた物理情報ニューラルネットワーク(PINN)の改良戦略を提案する。
PINNの解法は、完全接続された病理のスペクトルバイアス、不安定な勾配、収束と精度の難しさなど、多くの問題に悩まされている。
本稿では,既存の PINN フレームワークを補完する OT-based sample を用いて,Fokker-Planck-Kolmogorov Equation (FPKE) を解くための新しいトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2021-05-26T02:51:20Z) - ResNet-LDDMM: Advancing the LDDMM Framework Using Deep Residual Networks [86.37110868126548]
本研究では,eulerの離散化スキームに基づく非定常ode(フロー方程式)の解法として,深層残留ニューラルネットワークを用いた。
複雑なトポロジー保存変換の下での3次元形状の多種多様な登録問題について述べる。
論文 参考訳(メタデータ) (2021-02-16T04:07:13Z) - Improve Generalization and Robustness of Neural Networks via Weight
Scale Shifting Invariant Regularizations [52.493315075385325]
重み劣化を含む正則化器の族は、均質な活性化関数を持つネットワークに対する本質的な重みのノルムをペナルティ化するのに有効でないことを示す。
そこで我々は,ニューラルネットワークの本質的な規範を効果的に制約する改良型正規化器を提案する。
論文 参考訳(メタデータ) (2020-08-07T02:55:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。