論文の概要: Solving Forward and Inverse Problems of Contact Mechanics using
Physics-Informed Neural Networks
- arxiv url: http://arxiv.org/abs/2308.12716v1
- Date: Thu, 24 Aug 2023 11:31:24 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-25 14:17:48.279025
- Title: Solving Forward and Inverse Problems of Contact Mechanics using
Physics-Informed Neural Networks
- Title(参考訳): 物理インフォーマントニューラルネットワークを用いた接触力学の前方および逆問題の解法
- Authors: T. Sahin, M. von Danwitz, A. Popp
- Abstract要約: 出力変換によって強化された混合変数定式化でPINNをデプロイし、ハード制約とソフト制約を強制する。
PINNは純粋部分方程式(PDE)の解法として、データ強化フォワードモデルとして、そして高速に評価可能なサロゲートモデルとして機能することを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: This paper explores the ability of physics-informed neural networks (PINNs)
to solve forward and inverse problems of contact mechanics for small
deformation elasticity. We deploy PINNs in a mixed-variable formulation
enhanced by output transformation to enforce Dirichlet and Neumann boundary
conditions as hard constraints. Inequality constraints of contact problems,
namely Karush-Kuhn-Tucker (KKT) type conditions, are enforced as soft
constraints by incorporating them into the loss function during network
training. To formulate the loss function contribution of KKT constraints,
existing approaches applied to elastoplasticity problems are investigated and
we explore a nonlinear complementarity problem (NCP) function, namely
Fischer-Burmeister, which possesses advantageous characteristics in terms of
optimization. Based on the Hertzian contact problem, we show that PINNs can
serve as pure partial differential equation (PDE) solver, as data-enhanced
forward model, as inverse solver for parameter identification, and as
fast-to-evaluate surrogate model. Furthermore, we demonstrate the importance of
choosing proper hyperparameters, e.g. loss weights, and a combination of Adam
and L-BFGS-B optimizers aiming for better results in terms of accuracy and
training time.
- Abstract(参考訳): 本稿では, 物理インフォームドニューラルネットワーク(PINN)を用いて, 小変形弾性に対する接触力学の前方および逆問題の解法について検討する。
我々は,dirichlet と neumann の境界条件を厳密な制約として強制するために,出力変換により強化された混合変数式に pinn を展開する。
接触問題の不等式制約、すなわちKKT型条件は、ネットワークトレーニング中に損失関数に組み込むことにより、ソフト制約として強制される。
KKT制約の損失関数の寄与を定式化するために、エラスト塑性問題に適用した既存のアプローチを調査し、最適化の観点から有利な特性を持つ非線形相補性問題(NCP)関数(Fischer-Burmeister)を探索する。
ヘルツ接点問題に基づいて、PINNは純粋偏微分方程式(PDE)、データ強化フォワードモデル、パラメータ同定の逆解法、そして高速で評価可能なサロゲートモデルとして機能することを示す。
さらに, 適切なハイパーパラメータ, 損失重み, およびadamとl-bfgs-bオプティマイザの組み合わせが, 精度とトレーニング時間の観点からより良い結果をもたらすことの重要性を実証する。
関連論文リスト
- DeltaPhi: Learning Physical Trajectory Residual for PDE Solving [54.13671100638092]
我々は,物理軌道残差学習(DeltaPhi)を提案し,定式化する。
既存のニューラル演算子ネットワークに基づく残差演算子マッピングのサロゲートモデルについて学習する。
直接学習と比較して,PDEの解法には物理残差学習が望ましいと結論づける。
論文 参考訳(メタデータ) (2024-06-14T07:45:07Z) - A Stable and Scalable Method for Solving Initial Value PDEs with Neural
Networks [52.5899851000193]
我々は,ネットワークの条件が悪くなるのを防止し,パラメータ数で時間線形に動作するODEベースのIPPソルバを開発した。
このアプローチに基づく現在の手法は2つの重要な問題に悩まされていることを示す。
まず、ODEに従うと、問題の条件付けにおいて制御不能な成長が生じ、最終的に許容できないほど大きな数値誤差が生じる。
論文 参考訳(メタデータ) (2023-04-28T17:28:18Z) - Physics-aware deep learning framework for linear elasticity [0.0]
本稿では,線形連続弾性問題に対する効率的で堅牢なデータ駆動型ディープラーニング(DL)計算フレームワークを提案する。
フィールド変数の正確な表現のために,多目的損失関数を提案する。
弾性に対するAirimaty解やKirchhoff-Loveプレート問題を含むいくつかのベンチマーク問題を解く。
論文 参考訳(メタデータ) (2023-02-19T20:33:32Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
本研究では,より複雑に結合した常微分方程式(ODE)を解く物理インフォームドニューラルネットワーク(PINN)の能力を評価する。
PINNの複雑性が増大するにつれて,これらのベンチマークに対する正しい解が得られないことが示される。
PINN損失のラプラシアンは,ネットワーク容量の不足,ODEの条件の低下,局所曲率の高さなど,いくつかの理由を明らかにした。
論文 参考訳(メタデータ) (2022-10-14T15:01:32Z) - Physics-Informed Neural Network Method for Parabolic Differential
Equations with Sharply Perturbed Initial Conditions [68.8204255655161]
急激な摂動初期条件を持つパラボラ問題に対する物理インフォームドニューラルネットワーク(PINN)モデルを開発した。
ADE解の局所的な大きな勾配は(PINNでよく見られる)ラテンハイパーキューブで方程式の残余の高効率なサンプリングを行う。
本稿では,他の方法により選択した量よりも精度の高いPINNソリューションを生成する損失関数における重みの基準を提案する。
論文 参考訳(メタデータ) (2022-08-18T05:00:24Z) - Mitigating Learning Complexity in Physics and Equality Constrained
Artificial Neural Networks [0.9137554315375919]
偏微分方程式(PDE)の解を学ぶために物理インフォームドニューラルネットワーク(PINN)が提案されている。
PINNでは、利害関係のPDEの残留形態とその境界条件は、軟罰として複合目的関数にまとめられる。
本稿では,この目的関数を定式化する方法が,異なる種類のPDEに適用した場合のPINNアプローチにおける厳しい制約の源であることを示す。
論文 参考訳(メタデータ) (2022-06-19T04:12:01Z) - Lagrangian PINNs: A causality-conforming solution to failure modes of
physics-informed neural networks [5.8010446129208155]
物理インフォームドニューラルネットワーク(PINN)は、ニューラルネットワークを利用して偏微分方程式(PDE)に制約された最適化問題の解を求める。
境界条件が厳格に強制された場合でも,トレーニングの課題は継続することを示す。
PDEインフォームド・ソリューションとして,ラグランジアン・フレーム(LPINN)上でのPINNの再構成を提案する。
論文 参考訳(メタデータ) (2022-05-05T19:48:05Z) - Enhanced Physics-Informed Neural Networks with Augmented Lagrangian
Relaxation Method (AL-PINNs) [1.7403133838762446]
物理インフォームドニューラルネットワーク(PINN)は非線形偏微分方程式(PDE)の解の強力な近似器である
PINN(AL-PINN)のための拡張ラグランジアン緩和法を提案する。
AL-PINNは、最先端の適応的損失分散アルゴリズムと比較して、相対誤差がはるかに小さいことを様々な数値実験で示している。
論文 参考訳(メタデータ) (2022-04-29T08:33:11Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
我々は,物理インフォームドニューラルネットワークのトレーニングを著しく高速化する新しい手法を開発した。
特に、ガウス滑らか化モデルによりPDE解をパラメータ化し、スタインの恒等性から導かれる2階微分がバックプロパゲーションなしで効率的に計算可能であることを示す。
実験の結果,提案手法は通常のPINN訓練に比べて2桁の精度で競合誤差を実現できることがわかった。
論文 参考訳(メタデータ) (2022-02-18T18:07:54Z) - Physics-Informed Neural Operator for Learning Partial Differential
Equations [55.406540167010014]
PINOは、演算子を学ぶために異なる解像度でデータとPDE制約を組み込んだ最初のハイブリッドアプローチである。
結果の PINO モデルは、多くの人気のある PDE ファミリの基底構造解演算子を正確に近似することができる。
論文 参考訳(メタデータ) (2021-11-06T03:41:34Z) - Physics and Equality Constrained Artificial Neural Networks: Application
to Partial Differential Equations [1.370633147306388]
偏微分方程式(PDE)の解を学ぶために物理インフォームドニューラルネットワーク(PINN)が提案されている。
本稿では,この目的関数の定式化方法が,PINNアプローチにおける厳密な制約の源であることを示す。
本稿では,逆問題と前方問題の両方に対処可能な多目的フレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-30T05:55:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。