論文の概要: Physics-informed PointNet: On how many irregular geometries can it solve
an inverse problem simultaneously? Application to linear elasticity
- arxiv url: http://arxiv.org/abs/2303.13634v3
- Date: Mon, 18 Sep 2023 16:22:03 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-20 00:29:31.796381
- Title: Physics-informed PointNet: On how many irregular geometries can it solve
an inverse problem simultaneously? Application to linear elasticity
- Title(参考訳): 物理インフォームドポイントネット:不規則な幾何の測地を同時に解くことができるか?
線形弾性への応用
- Authors: Ali Kashefi, Leonidas J. Guibas, Tapan Mukerji
- Abstract要約: 物理インフォームドポイントネット(PIPN)は、PINNと完全に教師付き学習モデルの間のギャップを埋めるように設計されている。
PIPNは数百の領域で所望の偏微分方程式の解を同時に予測する。
具体的には、PIPNは、異なるジオメトリを持つ500以上の領域にまたがる平面応力問題の解を同時に予測する。
- 参考スコア(独自算出の注目度): 58.44709568277582
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Regular physics-informed neural networks (PINNs) predict the solution of
partial differential equations using sparse labeled data but only over a single
domain. On the other hand, fully supervised learning models are first trained
usually over a few thousand domains with known solutions (i.e., labeled data)
and then predict the solution over a few hundred unseen domains.
Physics-informed PointNet (PIPN) is primarily designed to fill this gap between
PINNs (as weakly supervised learning models) and fully supervised learning
models. In this article, we demonstrate that PIPN predicts the solution of
desired partial differential equations over a few hundred domains
simultaneously, while it only uses sparse labeled data. This framework benefits
fast geometric designs in the industry when only sparse labeled data are
available. Particularly, we show that PIPN predicts the solution of a plane
stress problem over more than 500 domains with different geometries,
simultaneously. Moreover, we pioneer implementing the concept of remarkable
batch size (i.e., the number of geometries fed into PIPN at each sub-epoch)
into PIPN. Specifically, we try batch sizes of 7, 14, 19, 38, 76, and 133.
Additionally, the effect of the PIPN size, symmetric function in the PIPN
architecture, and static and dynamic weights for the component of the sparse
labeled data in the loss function are investigated.
- Abstract(参考訳): 正規物理情報ニューラルネットワーク(PINN)はスパースラベル付きデータを用いた偏微分方程式の解を1つの領域で予測する。
一方、完全に教師付き学習モデルは通常、既知のソリューション(ラベル付きデータ)を持つ数千以上のドメインで訓練され、数百の未知のドメインでそのソリューションを予測する。
物理インフォームドポイントネット(PIPN)は、PINN(弱教師付き学習モデル)と完全教師付き学習モデルの間のギャップを埋めるように設計されている。
本稿では、PIPNが数百の領域に対して所望の偏微分方程式の解を同時に予測し、スパースラベル付きデータのみを使用することを示した。
このフレームワークは、ラベル付きデータしか利用できない業界で高速な幾何学的設計の恩恵を受ける。
特に, pipnは, 異なる地形を持つ500以上の領域において, 平面応力問題の解を同時に予測することを示した。
さらに,顕著なバッチサイズの概念(すなわち,各サブエポックで pipn に供給されるジオメトリの数)を pipn に実装する先駆者でもある。
具体的には,7,14,19,38,76,133のバッチサイズを試す。
さらに、損失関数におけるスパースラベルデータの構成成分に対するPIPNサイズ、PIPNアーキテクチャにおける対称関数、および静的および動的重みの影響について検討した。
関連論文リスト
- Learning Only On Boundaries: a Physics-Informed Neural operator for
Solving Parametric Partial Differential Equations in Complex Geometries [10.250994619846416]
ラベル付きデータなしでパラメータ化境界値問題を解決する物理インフォームド・ニューラル演算子法を提案する。
数値実験により,パラメータ化複素測地と非有界問題の有効性が示された。
論文 参考訳(メタデータ) (2023-08-24T17:29:57Z) - Physics-Informed Boundary Integral Networks (PIBI-Nets): A Data-Driven Approach for Solving Partial Differential Equations [1.6435014180036467]
偏微分方程式(PDE)は力学系の関連する現象を記述するために広く用いられる。
高次元設定では、PINNは計算領域全体にわたって密度の高いコロケーションポイントを必要とするため、しばしば計算上の問題に悩まされる。
本稿では,PDEを元の問題空間よりも1次元以下で解くためのデータ駆動手法として,Physical-Informed Boundary Networks(PIBI-Nets)を提案する。
論文 参考訳(メタデータ) (2023-08-18T14:03:34Z) - Towards General-Purpose Representation Learning of Polygonal Geometries [62.34832826705641]
我々は,多角形形状を埋め込み空間に符号化できる汎用多角形符号化モデルを開発した。
1)MNISTに基づく形状分類,2)DBSR-46KとDBSR-cplx46Kという2つの新しいデータセットに基づく空間関係予測を行う。
以上の結果から,NUFTspec と ResNet1D は,既存のベースラインよりも有意なマージンで優れていた。
論文 参考訳(メタデータ) (2022-09-29T15:59:23Z) - $\Delta$-PINNs: physics-informed neural networks on complex geometries [2.1485350418225244]
物理インフォームドニューラルネットワーク(PINN)は偏微分方程式を含む前方および逆問題の解法において有望であることを示す。
現在までに、問題が解決されている領域のトポロジについて、PINNに知らせる明確な方法はない。
本稿では,Laplace-Beltrami演算子の固有関数に基づくPINNの新たな位置符号化機構を提案する。
論文 参考訳(メタデータ) (2022-09-08T18:03:19Z) - Improved Training of Physics-Informed Neural Networks with Model
Ensembles [81.38804205212425]
我々は、PINNを正しい解に収束させるため、解区間を徐々に拡大することを提案する。
すべてのアンサンブルのメンバーは、観測されたデータの近くで同じ解に収束する。
提案手法は, 得られた解の精度を向上させることができることを示す。
論文 参考訳(メタデータ) (2022-04-11T14:05:34Z) - Scaling Structured Inference with Randomization [64.18063627155128]
本稿では、構造化されたモデルを数万の潜在状態に拡張するためにランダム化された動的プログラミング(RDP)のファミリを提案する。
我々の手法は古典的DPベースの推論に広く適用できる。
また、自動微分とも互換性があり、ニューラルネットワークとシームレスに統合できる。
論文 参考訳(メタデータ) (2021-12-07T11:26:41Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
科学機械学習における最近の研究は、いわゆる物理情報ニューラルネットワーク(PINN)モデルを開発した。
既存のPINN方法論は比較的自明な問題に対して優れたモデルを学ぶことができるが、単純なPDEであっても、関連する物理現象を学習するのに失敗する可能性があることを実証する。
これらの障害モードは,NNアーキテクチャの表現力の欠如によるものではなく,PINNのセットアップによって損失状況の最適化が極めて困難であることを示す。
論文 参考訳(メタデータ) (2021-09-02T16:06:45Z) - IDRLnet: A Physics-Informed Neural Network Library [9.877979064734802]
物理情報ニューラルネットワーク(英: Physics Informed Neural Network, PINN)は、前方および逆問題の両方を解決するために使用される科学計算フレームワークである。
本稿では,PINNによる問題をモデル化および解決するためのPythonツールボックスであるIDRLnetを紹介する。
論文 参考訳(メタデータ) (2021-07-09T09:18:35Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。