論文の概要: Learning Only On Boundaries: a Physics-Informed Neural operator for
Solving Parametric Partial Differential Equations in Complex Geometries
- arxiv url: http://arxiv.org/abs/2308.12939v1
- Date: Thu, 24 Aug 2023 17:29:57 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-25 12:54:37.624185
- Title: Learning Only On Boundaries: a Physics-Informed Neural operator for
Solving Parametric Partial Differential Equations in Complex Geometries
- Title(参考訳): 境界のみを学習する:複素幾何学におけるパラメトリック偏微分方程式を解く物理インフォームドニューラルネットワーク
- Authors: Zhiwei Fang, Sifan Wang, and Paris Perdikaris
- Abstract要約: ラベル付きデータなしでパラメータ化境界値問題を解決する物理インフォームド・ニューラル演算子法を提案する。
数値実験により,パラメータ化複素測地と非有界問題の有効性が示された。
- 参考スコア(独自算出の注目度): 10.250994619846416
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently deep learning surrogates and neural operators have shown promise in
solving partial differential equations (PDEs). However, they often require a
large amount of training data and are limited to bounded domains. In this work,
we present a novel physics-informed neural operator method to solve
parametrized boundary value problems without labeled data. By reformulating the
PDEs into boundary integral equations (BIEs), we can train the operator network
solely on the boundary of the domain. This approach reduces the number of
required sample points from $O(N^d)$ to $O(N^{d-1})$, where $d$ is the domain's
dimension, leading to a significant acceleration of the training process.
Additionally, our method can handle unbounded problems, which are unattainable
for existing physics-informed neural networks (PINNs) and neural operators. Our
numerical experiments show the effectiveness of parametrized complex geometries
and unbounded problems.
- Abstract(参考訳): 近年、ディープラーニングサロゲートとニューラル演算子は偏微分方程式(PDE)の解法において有望であることを示す。
しかし、それらはしばしば大量のトレーニングデータを必要とし、境界付けられたドメインに制限される。
本研究では,ラベル付きデータなしでパラメータ化境界値問題を解決する物理インフォームドニューラル演算子を提案する。
PDEを境界積分方程式(BIE)に再構成することにより、ドメインの境界のみに基づいて演算子ネットワークを訓練することができる。
このアプローチでは、必要なサンプルポイントの数を$o(n^d)$から$o(n^{d-1})$に削減する。
さらに,既存の物理インフォームドニューラルネットワーク(PINN)やニューラル演算子では実現不可能な非有界問題にも対処できる。
数値実験により,パラメトリ化複素幾何学と非有界問題の有効性が示された。
関連論文リスト
- DimOL: Dimensional Awareness as A New 'Dimension' in Operator Learning [63.5925701087252]
本稿では,DimOL(Dimension-aware Operator Learning)を紹介し,次元解析から洞察を得る。
DimOLを実装するために,FNOおよびTransformerベースのPDEソルバにシームレスに統合可能なProdLayerを提案する。
経験的に、DimOLモデルはPDEデータセット内で最大48%のパフォーマンス向上を達成する。
論文 参考訳(メタデータ) (2024-10-08T10:48:50Z) - Physics-Informed Geometry-Aware Neural Operator [1.2430809884830318]
工学設計の問題は、可変PDEパラメータとドメイン幾何学の下でパラメトリック部分微分方程式(PDE)を解くことである。
近年、ニューラル演算子はPDE演算子を学習し、PDE解を素早く予測する。
我々はPDEパラメータとドメインジオメトリの両方を同時に一般化する新しい手法であるPhysical-Informed Geometry-Aware Neural Operator (PI-GANO)を導入する。
論文 参考訳(メタデータ) (2024-08-02T23:11:42Z) - Improving PINNs By Algebraic Inclusion of Boundary and Initial Conditions [0.1874930567916036]
AI for Science」は、AI技術を用いた基本的な科学的問題を解決することを目的としている。
本研究では、トレーニング対象のモデルを単にニューラルネットワークから非線形変換に変更する可能性について検討する。
これにより、損失関数の項数は標準のPINN損失よりも減少する。
論文 参考訳(メタデータ) (2024-07-30T11:19:48Z) - Physics informed WNO [0.0]
パラメトリック偏微分方程式(PDE)系の解演算子をラベル付きトレーニングデータなしで学習するための物理インフォームドウェーブレット演算子(WNO)を提案する。
このフレームワークの有効性は、工学と科学の様々な分野に関連する4つの非線形ニューラルネットワークで検証され、実証されている。
論文 参考訳(メタデータ) (2023-02-12T14:31:50Z) - BINN: A deep learning approach for computational mechanics problems
based on boundary integral equations [4.397337158619076]
計算力学における境界値問題に対する境界積分型ニューラルネットワーク(BINN)を提案する。
境界積分方程式は、すべての未知を境界に転送するために使用され、その後、未知をニューラルネットワークを用いて近似し、トレーニングプロセスを通じて解決する。
論文 参考訳(メタデータ) (2023-01-11T14:10:23Z) - $\Delta$-PINNs: physics-informed neural networks on complex geometries [2.1485350418225244]
物理インフォームドニューラルネットワーク(PINN)は偏微分方程式を含む前方および逆問題の解法において有望であることを示す。
現在までに、問題が解決されている領域のトポロジについて、PINNに知らせる明確な方法はない。
本稿では,Laplace-Beltrami演算子の固有関数に基づくPINNの新たな位置符号化機構を提案する。
論文 参考訳(メタデータ) (2022-09-08T18:03:19Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Physics-Informed Neural Operator for Learning Partial Differential
Equations [55.406540167010014]
PINOは、演算子を学ぶために異なる解像度でデータとPDE制約を組み込んだ最初のハイブリッドアプローチである。
結果の PINO モデルは、多くの人気のある PDE ファミリの基底構造解演算子を正確に近似することができる。
論文 参考訳(メタデータ) (2021-11-06T03:41:34Z) - Fourier Neural Operator for Parametric Partial Differential Equations [57.90284928158383]
積分カーネルを直接フーリエ空間でパラメータ化することで、新しいニューラル演算子を定式化する。
バーガースの方程式、ダーシー流、ナビエ・ストークス方程式の実験を行う。
従来のPDEソルバに比べて最大3桁高速である。
論文 参考訳(メタデータ) (2020-10-18T00:34:21Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
偏微分方程式 (PDE) を解くことは、多くのプロセスがPDEの観点でモデル化できるため、科学の多くの分野において不可欠である。
最近の数値解法では、基礎となる方程式を手動で離散化するだけでなく、分散コンピューティングのための高度で調整されたコードも必要である。
偏微分方程式, 物理インフォームドニューラルネットワーク(PINN)に対する連続メッシュフリーニューラルネットワークの適用性について検討する。
本稿では,解析解に関するGatedPINNの精度と,スペクトル解法などの最先端数値解法について論じる。
論文 参考訳(メタデータ) (2020-09-08T13:26:51Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。