論文の概要: $\Delta$-PINNs: physics-informed neural networks on complex geometries
- arxiv url: http://arxiv.org/abs/2209.03984v1
- Date: Thu, 8 Sep 2022 18:03:19 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-12 12:52:33.495889
- Title: $\Delta$-PINNs: physics-informed neural networks on complex geometries
- Title(参考訳): $\Delta$-PINNs:複雑なジオメトリ上の物理インフォームドニューラルネットワーク
- Authors: Francisco Sahli Costabal, Simone Pezzuto, Paris Perdikaris
- Abstract要約: 物理インフォームドニューラルネットワーク(PINN)は偏微分方程式を含む前方および逆問題の解法において有望であることを示す。
現在までに、問題が解決されている領域のトポロジについて、PINNに知らせる明確な方法はない。
本稿では,Laplace-Beltrami演算子の固有関数に基づくPINNの新たな位置符号化機構を提案する。
- 参考スコア(独自算出の注目度): 2.1485350418225244
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Physics-informed neural networks (PINNs) have demonstrated promise in solving
forward and inverse problems involving partial differential equations. Despite
recent progress on expanding the class of problems that can be tackled by
PINNs, most of existing use-cases involve simple geometric domains. To date,
there is no clear way to inform PINNs about the topology of the domain where
the problem is being solved. In this work, we propose a novel positional
encoding mechanism for PINNs based on the eigenfunctions of the
Laplace-Beltrami operator. This technique allows to create an input space for
the neural network that represents the geometry of a given object. We
approximate the eigenfunctions as well as the operators involved in the partial
differential equations with finite elements. We extensively test and compare
the proposed methodology against traditional PINNs in complex shapes, such as a
coil, a heat sink and a bunny, with different physics, such as the Eikonal
equation and heat transfer. We also study the sensitivity of our method to the
number of eigenfunctions used, as well as the discretization used for the
eigenfunctions and the underlying operators. Our results show excellent
agreement with the ground truth data in cases where traditional PINNs fail to
produce a meaningful solution. We envision this new technique will expand the
effectiveness of PINNs to more realistic applications.
- Abstract(参考訳): 物理インフォームドニューラルネットワーク(PINN)は、偏微分方程式を含む前方および逆問題の解法を実証している。
PINNによって対処できる問題のクラスを拡大する最近の進歩にもかかわらず、既存のユースケースの多くは単純な幾何学的ドメインを含んでいる。
現在までに、問題が解決されている領域のトポロジについて、PINNに知らせる明確な方法はない。
本研究では,Laplace-Beltrami演算子の固有関数に基づくPINNの新たな位置符号化機構を提案する。
このテクニックは、与えられたオブジェクトの幾何学を表すニューラルネットワークの入力空間を作成することができる。
有限要素を持つ偏微分方程式の作用素と同様に固有関数を近似する。
提案手法をコイル,ヒートシンク,バニーなどの複雑な形状のピンに対して,固有方程式や熱伝達などの物理法則を用いて広範囲に検証し,比較した。
また,本手法の固有関数数に対する感度,および固有関数および基本演算子に対する離散化について検討した。
この結果から,従来のPINNが意味ある解を導出できない場合において,基礎的真理データと良好な一致を示した。
この新しい技術は、pinnの有効性をより現実的なアプリケーションにも拡張することを期待している。
関連論文リスト
- Physics-informed PointNet: On how many irregular geometries can it solve
an inverse problem simultaneously? Application to linear elasticity [58.44709568277582]
物理インフォームドポイントネット(PIPN)は、PINNと完全に教師付き学習モデルの間のギャップを埋めるように設計されている。
PIPNは数百の領域で所望の偏微分方程式の解を同時に予測する。
具体的には、PIPNは、異なるジオメトリを持つ500以上の領域にまたがる平面応力問題の解を同時に予測する。
論文 参考訳(メタデータ) (2023-03-22T06:49:34Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
本研究では,より複雑に結合した常微分方程式(ODE)を解く物理インフォームドニューラルネットワーク(PINN)の能力を評価する。
PINNの複雑性が増大するにつれて,これらのベンチマークに対する正しい解が得られないことが示される。
PINN損失のラプラシアンは,ネットワーク容量の不足,ODEの条件の低下,局所曲率の高さなど,いくつかの理由を明らかにした。
論文 参考訳(メタデータ) (2022-10-14T15:01:32Z) - Semi-analytic PINN methods for singularly perturbed boundary value
problems [0.8594140167290099]
本稿では,新しい半解析的物理情報ニューラルネットワーク(PINN)を提案し,特異な摂動境界値問題の解法を提案する。
PINNは、偏微分方程式の数値解を見つけるための有望な視点を提供する科学機械学習フレームワークである。
論文 参考訳(メタデータ) (2022-08-19T04:26:40Z) - PhyGNNet: Solving spatiotemporal PDEs with Physics-informed Graph Neural
Network [12.385926494640932]
本稿では,グラフニューラルネットワークの基本値から偏微分方程式を解くためのPhyGNNetを提案する。
特に、計算領域を正規グリッドに分割し、グリッド上の偏微分演算子を定義し、PhyGNNetモデルを構築する最適化のためにネットワークのpde損失を構築する。
論文 参考訳(メタデータ) (2022-08-07T13:33:34Z) - Enforcing Continuous Physical Symmetries in Deep Learning Network for
Solving Partial Differential Equations [3.6317085868198467]
我々は,PDEのリー対称性によって誘導される不変表面条件をPINNの損失関数に組み込む,新しい対称性を持つ物理情報ニューラルネットワーク(SPINN)を提案する。
SPINNは、トレーニングポイントが少なく、ニューラルネットワークのよりシンプルなアーキテクチャで、PINNよりも優れた性能を示す。
論文 参考訳(メタデータ) (2022-06-19T00:44:22Z) - Auto-PINN: Understanding and Optimizing Physics-Informed Neural
Architecture [77.59766598165551]
物理インフォームドニューラルネットワーク(PINN)は、ディープラーニングのパワーを科学計算にもたらし、科学と工学の実践に革命をもたらしている。
本稿では,ニューラル・アーキテクチャ・サーチ(NAS)手法をPINN設計に適用したAuto-PINNを提案する。
標準PDEベンチマークを用いた包括的事前実験により、PINNの構造と性能の関係を探索することができる。
論文 参考訳(メタデータ) (2022-05-27T03:24:31Z) - Improved Training of Physics-Informed Neural Networks with Model
Ensembles [81.38804205212425]
我々は、PINNを正しい解に収束させるため、解区間を徐々に拡大することを提案する。
すべてのアンサンブルのメンバーは、観測されたデータの近くで同じ解に収束する。
提案手法は, 得られた解の精度を向上させることができることを示す。
論文 参考訳(メタデータ) (2022-04-11T14:05:34Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
科学機械学習における最近の研究は、いわゆる物理情報ニューラルネットワーク(PINN)モデルを開発した。
既存のPINN方法論は比較的自明な問題に対して優れたモデルを学ぶことができるが、単純なPDEであっても、関連する物理現象を学習するのに失敗する可能性があることを実証する。
これらの障害モードは,NNアーキテクチャの表現力の欠如によるものではなく,PINNのセットアップによって損失状況の最適化が極めて困難であることを示す。
論文 参考訳(メタデータ) (2021-09-02T16:06:45Z) - Finite Basis Physics-Informed Neural Networks (FBPINNs): a scalable
domain decomposition approach for solving differential equations [20.277873724720987]
我々はFBPINN(Finite Basis PINNs)と呼ばれる微分方程式に関連する大きな問題を解くための新しいスケーラブルなアプローチを提案する。
FBPINNは古典的有限要素法に着想を得ており、微分方程式の解はコンパクトな支持を持つ基底関数の有限集合の和として表される。
FBPINNでは、ニューラルネットワークを使ってこれらの基底関数を学習する。
論文 参考訳(メタデータ) (2021-07-16T13:03:47Z) - On the eigenvector bias of Fourier feature networks: From regression to
solving multi-scale PDEs with physics-informed neural networks [0.0]
ニューラルネットワーク(PINN)は、目標関数を近似する場合には、高周波またはマルチスケールの特徴を示す。
マルチスケールなランダムな観測機能を備えた新しいアーキテクチャを構築し、そのような座標埋め込み層が堅牢で正確なPINNモデルにどのように結びつくかを正当化します。
論文 参考訳(メタデータ) (2020-12-18T04:19:30Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。