論文の概要: GPT-PINN: Generative Pre-Trained Physics-Informed Neural Networks toward
non-intrusive Meta-learning of parametric PDEs
- arxiv url: http://arxiv.org/abs/2303.14878v1
- Date: Mon, 27 Mar 2023 02:22:09 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-28 17:04:57.944889
- Title: GPT-PINN: Generative Pre-Trained Physics-Informed Neural Networks toward
non-intrusive Meta-learning of parametric PDEs
- Title(参考訳): GPT-PINN:パラメトリックPDEの非侵入的メタラーニングに向けた物理インフォームニューラルネットワークの生成
- Authors: Yanlai Chen and Shawn Koohy
- Abstract要約: パラメトリックPDEの設定における課題を緩和するために,GPT-PINN(Generative Pre-Trained PINN)を提案する。
ネットワークのネットワークとして、その外/meta-networkは、ニューロン数が大幅に減少している隠蔽層が1つしかないことで、ハイパーリデュースされる。
メタネットワークは、システムのパラメトリック依存を適応的に学習し、この隠れた1つのニューロンを一度に成長させる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Physics-Informed Neural Network (PINN) has proven itself a powerful tool to
obtain the numerical solutions of nonlinear partial differential equations
(PDEs) leveraging the expressivity of deep neural networks and the computing
power of modern heterogeneous hardware. However, its training is still
time-consuming, especially in the multi-query and real-time simulation
settings, and its parameterization often overly excessive. In this paper, we
propose the Generative Pre-Trained PINN (GPT-PINN) to mitigate both challenges
in the setting of parametric PDEs. GPT-PINN represents a brand-new
meta-learning paradigm for parametric systems. As a network of networks, its
outer-/meta-network is hyper-reduced with only one hidden layer having
significantly reduced number of neurons. Moreover, its activation function at
each hidden neuron is a (full) PINN pre-trained at a judiciously selected
system configuration. The meta-network adaptively ``learns'' the parametric
dependence of the system and ``grows'' this hidden layer one neuron at a time.
In the end, by encompassing a very small number of networks trained at this set
of adaptively-selected parameter values, the meta-network is capable of
generating surrogate solutions for the parametric system across the entire
parameter domain accurately and efficiently.
- Abstract(参考訳): 物理インフォームドニューラルネットワーク(PINN)は、ディープニューラルネットワークの表現性と現代の異種ハードウェアの計算能力を活用する非線形偏微分方程式(PDE)の数値解を得るための強力なツールである。
しかし、そのトレーニングは、特にマルチクエリとリアルタイムのシミュレーション設定では、まだ時間がかかり、パラメータ化は過度に過剰になることが多い。
本稿では、パラメトリックPDEの設定における課題を緩和するために、GPT-PINN(Generative Pre-Trained PINN)を提案する。
GPT-PINNはパラメトリックシステムのための新しいメタラーニングパラダイムである。
ネットワークのネットワークとして、その外部/メタネットワークは、ニューロンの数を著しく減らした1つの隠れ層のみを持つハイパーリダクションである。
さらに、各隠れたニューロンの活性化機能は、事前に選択されたシステム構成で事前訓練された(フル)ピンである。
メタネットワークは適応的にシステムのパラメトリック依存を ``learns' とし、この隠れたレイヤ1ニューロンを '`grows' とした。
最後に、この適応的に選択されたパラメータ値のセットで訓練された非常に少数のネットワークを包含することで、メタネットワークはパラメータ領域全体にわたってパラメトリックシステムの代理解を正確かつ効率的に生成することができる。
関連論文リスト
- Enriched Physics-informed Neural Networks for Dynamic
Poisson-Nernst-Planck Systems [0.8192907805418583]
本稿では、動的Poisson-Nernst-Planck(PNP)方程式を解くために、メッシュレス深層学習アルゴリズム、EPINN(enriched Physics-informed Neural Network)を提案する。
EPINNは、従来の物理インフォームドニューラルネットワークを基盤フレームワークとして、損失関数のバランスをとるために適応的な損失重みを追加する。
数値計算の結果, 結合された非線形系の解法において, 従来の数値法よりも適用性が高いことがわかった。
論文 参考訳(メタデータ) (2024-02-01T02:57:07Z) - Hypernetwork-based Meta-Learning for Low-Rank Physics-Informed Neural
Networks [24.14254861023394]
本研究では,物理インフォームドニューラルネットワーク (PINN) がそのような解法の一つとして考えられる可能性を秘めた経路を提案する。
PINNは、ディープラーニングと科学計算の適切な統合を開拓してきたが、ニューラルネットワークの反復的な時間的トレーニングを必要としている。
本稿では,数百のモデルパラメータと関連するハイパーネットワークに基づくメタ学習アルゴリズムを含む軽量な低ランクPINNを提案する。
論文 参考訳(メタデータ) (2023-10-14T08:13:43Z) - PINNsFormer: A Transformer-Based Framework For Physics-Informed Neural Networks [22.39904196850583]
物理インフォームドニューラルネットワーク(PINN)は、偏微分方程式(PDE)の数値解を近似するための有望なディープラーニングフレームワークとして登場した。
我々は,この制限に対処するために,新しいTransformerベースのフレームワークであるPINNsFormerを紹介した。
PINNsFormerは、PINNの障害モードや高次元PDEなど、様々なシナリオにおいて優れた一般化能力と精度を実現する。
論文 参考訳(メタデータ) (2023-07-21T18:06:27Z) - Permutation Equivariant Neural Functionals [92.0667671999604]
この研究は、他のニューラルネットワークの重みや勾配を処理できるニューラルネットワークの設計を研究する。
隠れた層状ニューロンには固有の順序がないため, 深いフィードフォワードネットワークの重みに生じる置換対称性に着目する。
実験の結果, 置換同変ニューラル関数は多種多様なタスクに対して有効であることがわかった。
論文 参考訳(メタデータ) (2023-02-27T18:52:38Z) - Characteristics-Informed Neural Networks for Forward and Inverse
Hyperbolic Problems [0.0]
双曲型PDEを含む前方および逆問題に対する特徴情報ニューラルネットワーク(CINN)を提案する。
CINNは、通常のMSEデータ適合回帰損失をトレーニングした汎用ディープニューラルネットワークにおいて、PDEの特性を符号化する。
予備的な結果は、CINNがベースラインPINNの精度を改善しつつ、トレーニングの約2倍の速さで非物理的解を回避できることを示している。
論文 参考訳(メタデータ) (2022-12-28T18:38:53Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
ニューラルネットワークのチェックポイントのデータセットを構築し,パラメータの生成モデルをトレーニングする。
提案手法は,幅広い損失プロンプトに対するパラメータの生成に成功している。
我々は、教師付きおよび強化学習における異なるニューラルネットワークアーキテクチャとタスクに本手法を適用した。
論文 参考訳(メタデータ) (2022-09-26T17:59:58Z) - Auto-PINN: Understanding and Optimizing Physics-Informed Neural
Architecture [77.59766598165551]
物理インフォームドニューラルネットワーク(PINN)は、ディープラーニングのパワーを科学計算にもたらし、科学と工学の実践に革命をもたらしている。
本稿では,ニューラル・アーキテクチャ・サーチ(NAS)手法をPINN設計に適用したAuto-PINNを提案する。
標準PDEベンチマークを用いた包括的事前実験により、PINNの構造と性能の関係を探索することができる。
論文 参考訳(メタデータ) (2022-05-27T03:24:31Z) - Revisiting PINNs: Generative Adversarial Physics-informed Neural
Networks and Point-weighting Method [70.19159220248805]
物理インフォームドニューラルネットワーク(PINN)は、偏微分方程式(PDE)を数値的に解くためのディープラーニングフレームワークを提供する
本稿では,GA機構とPINNの構造を統合したGA-PINNを提案する。
本稿では,Adaboost法の重み付け戦略からヒントを得て,PINNのトレーニング効率を向上させるためのPW法を提案する。
論文 参考訳(メタデータ) (2022-05-18T06:50:44Z) - Learning Autonomy in Management of Wireless Random Networks [102.02142856863563]
本稿では,任意の数のランダム接続ノードを持つ無線ネットワークにおいて,分散最適化タスクに取り組む機械学習戦略を提案する。
我々は,ネットワークトポロジとは無関係に,前方および後方に計算を行う分散メッセージパスニューラルネットワーク(DMPNN)と呼ばれる,柔軟な深層ニューラルネットワーク形式を開発した。
論文 参考訳(メタデータ) (2021-06-15T09:03:28Z) - Self-Adaptive Physics-Informed Neural Networks using a Soft Attention Mechanism [1.6114012813668932]
非線形偏微分方程式(PDE)の数値解に対するディープニューラルネットワークの有望な応用として、物理情報ニューラルネットワーク(PINN)が登場した。
そこで本研究では,PINNを適応的にトレーニングする方法として,適応重みを完全にトレーニング可能とし,各トレーニングポイントに個別に適用する手法を提案する。
線形および非線形のベンチマーク問題による数値実験では、SA-PINNはL2エラーにおいて他の最先端のPINNアルゴリズムよりも優れていた。
論文 参考訳(メタデータ) (2020-09-07T04:07:52Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
本稿では、オーバーパラメータ化ディープニューラルネットワーク(DNN)のための新しい平均場フレームワークを提案する。
このフレームワークでは、DNNは連続的な極限におけるその特徴に対する確率測度と関数によって表現される。
本稿では、標準DNNとResidual Network(Res-Net)アーキテクチャを通してフレームワークを説明する。
論文 参考訳(メタデータ) (2020-07-03T01:37:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。