論文の概要: Hypernetwork-based Meta-Learning for Low-Rank Physics-Informed Neural
Networks
- arxiv url: http://arxiv.org/abs/2310.09528v1
- Date: Sat, 14 Oct 2023 08:13:43 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-18 02:07:59.547269
- Title: Hypernetwork-based Meta-Learning for Low-Rank Physics-Informed Neural
Networks
- Title(参考訳): 低ランク物理形ニューラルネットワークのためのハイパーネットワークに基づくメタラーニング
- Authors: Woojin Cho, Kookjin Lee, Donsub Rim, Noseong Park
- Abstract要約: 本研究では,物理インフォームドニューラルネットワーク (PINN) がそのような解法の一つとして考えられる可能性を秘めた経路を提案する。
PINNは、ディープラーニングと科学計算の適切な統合を開拓してきたが、ニューラルネットワークの反復的な時間的トレーニングを必要としている。
本稿では,数百のモデルパラメータと関連するハイパーネットワークに基づくメタ学習アルゴリズムを含む軽量な低ランクPINNを提案する。
- 参考スコア(独自算出の注目度): 24.14254861023394
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In various engineering and applied science applications, repetitive numerical
simulations of partial differential equations (PDEs) for varying input
parameters are often required (e.g., aircraft shape optimization over many
design parameters) and solvers are required to perform rapid execution. In this
study, we suggest a path that potentially opens up a possibility for
physics-informed neural networks (PINNs), emerging deep-learning-based solvers,
to be considered as one such solver. Although PINNs have pioneered a proper
integration of deep-learning and scientific computing, they require repetitive
time-consuming training of neural networks, which is not suitable for
many-query scenarios. To address this issue, we propose a lightweight low-rank
PINNs containing only hundreds of model parameters and an associated
hypernetwork-based meta-learning algorithm, which allows efficient
approximation of solutions of PDEs for varying ranges of PDE input parameters.
Moreover, we show that the proposed method is effective in overcoming a
challenging issue, known as "failure modes" of PINNs.
- Abstract(参考訳): 様々な工学や応用科学の応用において、様々な入力パラメータに対する偏微分方程式(PDE)の繰り返し数値シミュレーションが必要とされる(例えば、多くの設計パラメータに対する航空機形状の最適化)。
本研究では,物理インフォームドニューラルネットワーク(PINN)が新たに出現する深層学習型解法を,そのような解法の一つとみなす可能性を秘めている。
PINNは、ディープラーニングと科学計算の適切な統合を開拓してきたが、多くのクエリシナリオには適さないニューラルネットワークの反復的な時間的トレーニングを必要としている。
この問題に対処するために、数百のモデルパラメータと関連するハイパーネットワークベースのメタラーニングアルゴリズムを含む軽量な低ランクPINNを提案し、PDE入力パラメータの様々な範囲に対するPDEの解の効率的な近似を可能にする。
さらに,提案手法は,PINNの「障害モード」として知られる課題の克服に有効であることを示す。
関連論文リスト
- Deep Learning-based surrogate models for parametrized PDEs: handling
geometric variability through graph neural networks [0.0]
本研究では,時間依存型PDEシミュレーションにおけるグラフニューラルネットワーク(GNN)の可能性について検討する。
本稿では,データ駆動型タイムステッピング方式に基づくサロゲートモデルを構築するための体系的戦略を提案する。
GNNは,計算効率と新たなシナリオへの一般化の観点から,従来の代理モデルに代わる有効な代替手段を提供することができることを示す。
論文 参考訳(メタデータ) (2023-08-03T08:14:28Z) - A Stable and Scalable Method for Solving Initial Value PDEs with Neural
Networks [52.5899851000193]
我々は,ネットワークの条件が悪くなるのを防止し,パラメータ数で時間線形に動作するODEベースのIPPソルバを開発した。
このアプローチに基づく現在の手法は2つの重要な問題に悩まされていることを示す。
まず、ODEに従うと、問題の条件付けにおいて制御不能な成長が生じ、最終的に許容できないほど大きな数値誤差が生じる。
論文 参考訳(メタデータ) (2023-04-28T17:28:18Z) - A physics-informed neural network framework for modeling obstacle-related equations [3.687313790402688]
物理インフォームドニューラルネットワーク(PINN)は、スパースデータとノイズデータに基づいて偏微分方程式を解く魅力的なツールである。
ここでは、PINNを拡張して障害物関連PDEを解くことで、計算上の大きな課題を提示します。
提案したPINNの性能は、正規および不規則な障害物を受ける線形および非線形PDEの複数のシナリオで実証される。
論文 参考訳(メタデータ) (2023-04-07T09:22:28Z) - Ensemble learning for Physics Informed Neural Networks: a Gradient Boosting approach [10.250994619846416]
段階的強化(GB)と呼ばれる新しい訓練パラダイムを提案する。
与えられたPDEの解を1つのニューラルネットワークで直接学習する代わりに、我々のアルゴリズムは、より優れた結果を得るために、一連のニューラルネットワークを用いています。
この研究は、PINNでアンサンブル学習技術を採用するための扉も開ける。
論文 参考訳(メタデータ) (2023-02-25T19:11:44Z) - Auto-PINN: Understanding and Optimizing Physics-Informed Neural
Architecture [77.59766598165551]
物理インフォームドニューラルネットワーク(PINN)は、ディープラーニングのパワーを科学計算にもたらし、科学と工学の実践に革命をもたらしている。
本稿では,ニューラル・アーキテクチャ・サーチ(NAS)手法をPINN設計に適用したAuto-PINNを提案する。
標準PDEベンチマークを用いた包括的事前実験により、PINNの構造と性能の関係を探索することができる。
論文 参考訳(メタデータ) (2022-05-27T03:24:31Z) - Revisiting PINNs: Generative Adversarial Physics-informed Neural
Networks and Point-weighting Method [70.19159220248805]
物理インフォームドニューラルネットワーク(PINN)は、偏微分方程式(PDE)を数値的に解くためのディープラーニングフレームワークを提供する
本稿では,GA機構とPINNの構造を統合したGA-PINNを提案する。
本稿では,Adaboost法の重み付け戦略からヒントを得て,PINNのトレーニング効率を向上させるためのPW法を提案する。
論文 参考訳(メタデータ) (2022-05-18T06:50:44Z) - Spectrally Adapted Physics-Informed Neural Networks for Solving
Unbounded Domain Problems [0.0]
本研究では, (i) 物理インフォームドニューラルネットワーク (PINN) と (ii) 適応スペクトル法という2種類の数値手法を組み合わせる。
物理インフォームドニューラルネットワークによる高次数値スキームの実装により,PDEの解法を効率的に行うことができる。
次に,最近導入されたスペクトル手法の適応手法をPINNベースのPDEソルバに組み込んで,標準PINNで効率よく近似できない非有界領域問題の数値解を求める方法を示す。
論文 参考訳(メタデータ) (2022-02-06T05:25:22Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
科学機械学習における最近の研究は、いわゆる物理情報ニューラルネットワーク(PINN)モデルを開発した。
既存のPINN方法論は比較的自明な問題に対して優れたモデルを学ぶことができるが、単純なPDEであっても、関連する物理現象を学習するのに失敗する可能性があることを実証する。
これらの障害モードは,NNアーキテクチャの表現力の欠如によるものではなく,PINNのセットアップによって損失状況の最適化が極めて困難であることを示す。
論文 参考訳(メタデータ) (2021-09-02T16:06:45Z) - Optimal Transport Based Refinement of Physics-Informed Neural Networks [0.0]
我々は、最適輸送(OT)の概念に基づく偏微分方程式(PDE)の解法として、よく知られた物理情報ニューラルネットワーク(PINN)の改良戦略を提案する。
PINNの解法は、完全接続された病理のスペクトルバイアス、不安定な勾配、収束と精度の難しさなど、多くの問題に悩まされている。
本稿では,既存の PINN フレームワークを補完する OT-based sample を用いて,Fokker-Planck-Kolmogorov Equation (FPKE) を解くための新しいトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2021-05-26T02:51:20Z) - dNNsolve: an efficient NN-based PDE solver [62.997667081978825]
ODE/PDEを解決するためにデュアルニューラルネットワークを利用するdNNsolveを紹介します。
我々は,dNNsolveが1,2,3次元の幅広いODE/PDEを解くことができることを示す。
論文 参考訳(メタデータ) (2021-03-15T19:14:41Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
偏微分方程式 (PDE) を解くことは、多くのプロセスがPDEの観点でモデル化できるため、科学の多くの分野において不可欠である。
最近の数値解法では、基礎となる方程式を手動で離散化するだけでなく、分散コンピューティングのための高度で調整されたコードも必要である。
偏微分方程式, 物理インフォームドニューラルネットワーク(PINN)に対する連続メッシュフリーニューラルネットワークの適用性について検討する。
本稿では,解析解に関するGatedPINNの精度と,スペクトル解法などの最先端数値解法について論じる。
論文 参考訳(メタデータ) (2020-09-08T13:26:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。