論文の概要: Learning linear dynamical systems under convex constraints
- arxiv url: http://arxiv.org/abs/2303.15121v2
- Date: Tue, 1 Aug 2023 10:43:48 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-02 22:20:45.955097
- Title: Learning linear dynamical systems under convex constraints
- Title(参考訳): 凸制約下における線形力学系の学習
- Authors: Hemant Tyagi and Denis Efimov
- Abstract要約: 線形力学系を単一軌道の$T$サンプルから同定する問題を考察する。
フロベニウスノルムの非漸近誤差境界は、$A*$で$mathcalK$の局所サイズに依存する。
- 参考スコア(独自算出の注目度): 5.025654873456756
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the problem of finite-time identification of linear dynamical
systems from $T$ samples of a single trajectory. Recent results have
predominantly focused on the setup where no structural assumption is made on
the system matrix $A^* \in \mathbb{R}^{n \times n}$, and have consequently
analyzed the ordinary least squares (OLS) estimator in detail. We assume prior
structural information on $A^*$ is available, which can be captured in the form
of a convex set $\mathcal{K}$ containing $A^*$. For the solution of the ensuing
constrained least squares estimator, we derive non-asymptotic error bounds in
the Frobenius norm that depend on the local size of $\mathcal{K}$ at $A^*$. To
illustrate the usefulness of these results, we instantiate them for three
examples, namely when (i) $A^*$ is sparse and $\mathcal{K}$ is a suitably
scaled $\ell_1$ ball; (ii) $\mathcal{K}$ is a subspace; (iii) $\mathcal{K}$
consists of matrices each of which is formed by sampling a bivariate convex
function on a uniform $n \times n$ grid (convex regression). In all these
situations, we show that $A^*$ can be reliably estimated for values of $T$ much
smaller than what is needed for the unconstrained setting.
- Abstract(参考訳): 1つの軌道の$t$サンプルから線形力学系の有限時間同定の問題を考える。
最近の結果は、システム行列 $A^* \in \mathbb{R}^{n \times n}$ に構造的仮定が存在しないような設定に主に焦点を合わせ、その結果、通常の最小二乗推定器(OLS)を詳細に分析した。
A^*$ に関する以前の構造情報は、$A^*$ を含む凸集合 $\mathcal{K}$ の形で取得できると仮定する。
制約付き最小二乗推定子の解に対しては、フロベニウスノルムにおける非漸近的誤差境界を導出し、これは$a^*$ で $\mathcal{k}$ の局所サイズに依存する。
これらの結果の有用性を説明するために,これらを3つの例,すなわちいつインスタンス化する。
(i)$A^*$はスパースで$\mathcal{K}$は適切なスケールの$\ell_1$ボールである。
(ii) $\mathcal{K}$ は部分空間である。
(iii)$\mathcal{K}$は、一様$n \times n$ grid(凸回帰)上の二変数凸関数をサンプリングすることによって形成される行列からなる。
これらの全ての状況において、$a^*$ は、制約のない設定に必要な値よりもずっと小さい値に対して確実に推定できることを示した。
関連論文リスト
- Conditional regression for the Nonlinear Single-Variable Model [4.565636963872865]
F(X):=f(Pi_gamma):mathbbRdto[0,rmlen_gamma]$ ここで$Pi_gamma: [0,rmlen_gamma]tomathbbRd$と$f:[0,rmlen_gamma]tomathbbR1$を考える。
条件回帰に基づく非パラメトリック推定器を提案し、$one$-dimensionalOptimical min-maxレートを実現できることを示す。
論文 参考訳(メタデータ) (2024-11-14T18:53:51Z) - Optimal Sketching for Residual Error Estimation for Matrix and Vector Norms [50.15964512954274]
線形スケッチを用いた行列とベクトルノルムの残差誤差推定問題について検討する。
これは、前作とほぼ同じスケッチサイズと精度で、経験的にかなり有利であることを示す。
また、スパースリカバリ問題に対して$Omega(k2/pn1-2/p)$低いバウンダリを示し、これは$mathrmpoly(log n)$ factorまで厳密である。
論文 参考訳(メタデータ) (2024-08-16T02:33:07Z) - Provably learning a multi-head attention layer [55.2904547651831]
マルチヘッドアテンション層は、従来のフィードフォワードモデルとは分離したトランスフォーマーアーキテクチャの重要な構成要素の1つである。
本研究では,ランダムな例から多面的注意層を実証的に学習する研究を開始する。
最悪の場合、$m$に対する指数的依存は避けられないことを示す。
論文 参考訳(メタデータ) (2024-02-06T15:39:09Z) - A Unified Framework for Uniform Signal Recovery in Nonlinear Generative
Compressed Sensing [68.80803866919123]
非線形測定では、ほとんどの先行結果は一様ではない、すなわち、すべての$mathbfx*$に対してではなく、固定された$mathbfx*$に対して高い確率で保持される。
本フレームワークはGCSに1ビット/一様量子化観測と単一インデックスモデルを標準例として適用する。
また、指標集合が計量エントロピーが低い製品プロセスに対して、より厳密な境界を生み出す濃度不等式も開発する。
論文 参考訳(メタデータ) (2023-09-25T17:54:19Z) - Structure Learning in Graphical Models from Indirect Observations [17.521712510832558]
本稿では、パラメータ法と非パラメトリック法の両方を用いて、Rp$における$p$次元ランダムベクトル$Xのグラフィカル構造を学習する。
温和な条件下では、グラフ構造推定器が正しい構造を得ることができることを示す。
論文 参考訳(メタデータ) (2022-05-06T19:24:44Z) - Random matrices in service of ML footprint: ternary random features with
no performance loss [55.30329197651178]
我々は、$bf K$ の固有スペクトルが$bf w$ の i.d. 成分の分布とは独立であることを示す。
3次ランダム特徴(TRF)と呼ばれる新しいランダム手法を提案する。
提案したランダムな特徴の計算には乗算が不要であり、古典的なランダムな特徴に比べてストレージに$b$のコストがかかる。
論文 参考訳(メタデータ) (2021-10-05T09:33:49Z) - Spectral properties of sample covariance matrices arising from random
matrices with independent non identically distributed columns [50.053491972003656]
関数 $texttr(AR(z))$, for $R(z) = (frac1nXXT- zI_p)-1$ and $Ain mathcal M_p$ deterministic, have a standard deviation of order $O(|A|_* / sqrt n)$.
ここでは、$|mathbb E[R(z)] - tilde R(z)|_F を示す。
論文 参考訳(メタデータ) (2021-09-06T14:21:43Z) - Non-Convex Compressed Sensing with Training Data [0.0]
我々は、行列$A$上の比較的少数の仮定を持つ1層の線形ニューラルネットワークの範囲において高い確率で元の問題$Ax = b$の解決策を見つける。
本稿では、適切な初期値の代わりに、圧縮センシング問題に関連する追加のトレーニング問題 $Ax = B_l$, $l=1, dots, p$ が提供される代替案を検討する。
論文 参考訳(メタデータ) (2021-01-20T20:30:59Z) - Optimal Robust Linear Regression in Nearly Linear Time [97.11565882347772]
学習者が生成モデル$Y = langle X,w* rangle + epsilon$から$n$のサンプルにアクセスできるような高次元頑健な線形回帰問題について検討する。
i) $X$ is L4-L2 hypercontractive, $mathbbE [XXtop]$ has bounded condition number and $epsilon$ has bounded variance, (ii) $X$ is sub-Gaussian with identity second moment and $epsilon$ is
論文 参考訳(メタデータ) (2020-07-16T06:44:44Z) - Efficient Statistics for Sparse Graphical Models from Truncated Samples [19.205541380535397]
i) スパースガウス図形モデルの推論と (ii) スパース線形モデルの回復支援の2つの基本的問題と古典的問題に焦点をあてる。
疎線型回帰については、$(bf x,y)$ が生成されるが、$y = bf xtopOmega* + MathcalN(0,1)$ と $(bf x, y)$ は、truncation set $S subseteq mathbbRd$ に属する場合にのみ見られる。
論文 参考訳(メタデータ) (2020-06-17T09:21:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。