論文の概要: Understanding the Usability of AI Programming Assistants
- arxiv url: http://arxiv.org/abs/2303.17125v1
- Date: Thu, 30 Mar 2023 03:21:53 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-31 14:35:28.778518
- Title: Understanding the Usability of AI Programming Assistants
- Title(参考訳): AIプログラミングアシスタントのユーザビリティを理解する
- Authors: Jenny T. Liang, Chenyang Yang, Brad A. Myers
- Abstract要約: 実際には、開発者はAIプログラミングアシスタントの最初の提案を高い頻度で受け入れない。
これらのツールを使用して開発者のプラクティスを理解するため、多数の開発者を対象に調査を実施しました。
開発者がAIプログラミングアシスタントを使用する動機は、開発者がキーストロークを減らしたり、プログラミングタスクを素早く終了したり、構文をリコールするのに役立つためである。
また、開発者がこれらのツールを使用しない最も重要な理由は、これらのツールが特定の機能的あるいは非機能的要件に対処するコードを出力していないためです。
- 参考スコア(独自算出の注目度): 29.525168544725133
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The software engineering community recently has witnessed widespread
deployment of AI programming assistants, such as GitHub Copilot. However, in
practice, developers do not accept AI programming assistants' initial
suggestions at a high frequency. This leaves a number of open questions related
to the usability of these tools. To understand developers' practices while
using these tools and the important usability challenges they face, we
administered a survey to a large population of developers and received
responses from a diverse set of 410 developers. Through a mix of qualitative
and quantitative analyses, we found that developers are most motivated to use
AI programming assistants because they help developers reduce key-strokes,
finish programming tasks quickly, and recall syntax, but resonate less with
using them to help brainstorm potential solutions. We also found the most
important reasons why developers do not use these tools are because these tools
do not output code that addresses certain functional or non-functional
requirements and because developers have trouble controlling the tool to
generate the desired output. Our findings have implications for both creators
and users of AI programming assistants, such as designing minimal cognitive
effort interactions with these tools to reduce distractions for users while
they are programming.
- Abstract(参考訳): ソフトウェアエンジニアリングコミュニティは先頃、GitHub Copilotなど、AIプログラミングアシスタントの広範な展開を目撃した。
しかし、実際には、開発者は高い頻度でaiプログラミングアシスタントの最初の提案を受け入れない。
これにより、これらのツールのユーザビリティに関する多くのオープンな疑問が残る。
これらのツールを使用して開発者のプラクティスを理解し、彼らが直面する重要なユーザビリティ上の課題を理解するために、多数の開発者を対象に調査を実施し、さまざまな410人の開発者から回答を得た。
質的な分析と定量的分析の混合により、開発者はAIプログラミングアシスタントを使用する動機が最も高いのは、開発者がキーストロークを減らし、プログラミングタスクを素早く終了し、構文をリコールするのを助けるが、潜在的なソリューションをブレインストーミングするためにそれを使うことに共鳴しないためである。
また、開発者がこれらのツールを使用しない最も重要な理由は、これらのツールが特定の機能的あるいは非機能的要件に対処するコードを出力していないことと、開発者がツールを制御して所望の出力を生成するのに苦労しているためである。
私たちの発見は、AIプログラミングアシスタントのクリエーターとユーザの両方にとって、プログラミング中のユーザの気を散らすために、これらのツールとの最小限の認知的取り組みインタラクションを設計するなど、意味があります。
関連論文リスト
- ToolCoder: A Systematic Code-Empowered Tool Learning Framework for Large Language Models [49.04652315815501]
ツール学習は、大規模な言語モデル(LLM)にとって、外部ツールとのインタラクションを通じて、複雑な現実世界のタスクを解決する重要な機能として登場した。
本稿では,ツール学習をコード生成タスクとして再編成する新しいフレームワークであるToolCoderを提案する。
論文 参考訳(メタデータ) (2025-02-17T03:42:28Z) - Towards Decoding Developer Cognition in the Age of AI Assistants [9.887133861477233]
本稿では,生理的計測(EEGとアイトラッキング)とインタラクションデータを組み合わせて,AI支援プログラミングツールの開発者による使用状況を調べるための制御された観察的研究を提案する。
私たちは、認知負荷とタスク完了時間を計測しながら、AIアシストの有無に関わらず、プログラムタスクを完了させるために、プロの開発者を募集します。
論文 参考訳(メタデータ) (2025-01-05T23:25:21Z) - Darkit: A User-Friendly Software Toolkit for Spiking Large Language Model [50.37090759139591]
大規模言語モデル(LLM)は、数十億のパラメータからなる様々な実践的応用に広く応用されている。
人間の脳は、生物工学的なスパイキング機構を使って、エネルギー消費を大幅に削減しながら、同じ仕事をこなすことができる。
私たちはDarwinKit(Darkit)という名のソフトウェアツールキットをリリースし、脳にインスパイアされた大きな言語モデルの採用を加速しています。
論文 参考訳(メタデータ) (2024-12-20T07:50:08Z) - Dear Diary: A randomized controlled trial of Generative AI coding tools in the workplace [2.5280615594444567]
ジェネレーティブAIコーディングツールは比較的新しいもので、開発者への影響は従来のコーディングメトリクスを超えて拡大している。
本研究の目的は、生成型AIツールに関する既存の信念、自己認識、そしてこれらのツールの定期的な使用がこれらの信念をどう変えるかを明らかにすることである。
その結果,ジェネレーティブなAIコーディングツールの導入と持続的使用は,これらのツールが有用かつ楽しいものであるという開発者の認識を著しく高めていることが明らかとなった。
論文 参考訳(メタデータ) (2024-10-24T00:07:27Z) - Using AI-Based Coding Assistants in Practice: State of Affairs, Perceptions, and Ways Forward [9.177785129949]
私たちは、開発者がAIアシスタントをどのように使っているのかをよりよく理解することを目指しています。
我々は、AIアシスタントの使用方法に関する大規模な調査を行った。
論文 参考訳(メタデータ) (2024-06-11T23:10:43Z) - Code Compass: A Study on the Challenges of Navigating Unfamiliar Codebases [2.808331566391181]
これらの問題に対処するための新しいツールであるCodeを提案する。
本研究は,現在のツールと方法論における大きなギャップを浮き彫りにしている。
私たちのフォーマティブな調査は、開発者がドキュメントをナビゲートする時間をいかに効率的に削減するかを示しています。
論文 参考訳(メタデータ) (2024-05-10T06:58:31Z) - Developer Experiences with a Contextualized AI Coding Assistant:
Usability, Expectations, and Outcomes [11.520721038793285]
この研究は、コンテキスト化されたコーディングAIアシスタントであるStackSpot AIを制御された環境で使用した62人の参加者の初期体験に焦点を当てる。
アシスタントの使用は、大幅な時間を節約し、ドキュメントへのアクセスを容易にし、内部APIの正確なコードを生成する結果となった。
コーディングアシスタントが、複雑なコードを扱う際の変数応答や制限と同様に、よりコンテキスト情報にアクセスできるようにするために必要な知識ソースに関連する課題が観察された。
論文 参考訳(メタデータ) (2023-11-30T10:52:28Z) - The GitHub Development Workflow Automation Ecosystems [47.818229204130596]
大規模なソフトウェア開発は、非常に協力的な取り組みになっています。
この章では、開発ボットとGitHub Actionsのエコシステムについて解説する。
この領域における最先端技術に関する広範な調査を提供する。
論文 参考訳(メタデータ) (2023-05-08T15:24:23Z) - LLM-based Interaction for Content Generation: A Case Study on the
Perception of Employees in an IT department [85.1523466539595]
本稿では,IT企業の従業員が生成ツールを使用する意図を明らかにするためのアンケート調査を行う。
以上の結果から, 生成ツールの比較的平均的な受容性が示唆されるが, ツールが有用であると認識されるほど, 意図が高くなることが示唆された。
分析の結果, 生産ツールの利用頻度は, 従業員が作業の文脈でこれらのツールをどのように認識しているかを理解する上で重要な要因である可能性が示唆された。
論文 参考訳(メタデータ) (2023-04-18T15:35:43Z) - Generation Probabilities Are Not Enough: Uncertainty Highlighting in AI Code Completions [54.55334589363247]
本研究では,不確実性に関する情報を伝達することで,プログラマがより迅速かつ正確にコードを生成することができるかどうかを検討する。
トークンのハイライトは、編集される可能性が最も高いので、タスクの完了が早くなり、よりターゲットを絞った編集が可能になることがわかりました。
論文 参考訳(メタデータ) (2023-02-14T18:43:34Z) - Competition-Level Code Generation with AlphaCode [74.87216298566942]
より深い推論を必要とする問題に対する新しいソリューションを作成することができるコード生成システムであるAlphaCodeを紹介する。
Codeforcesプラットフォームにおける最近のプログラミングコンペティションのシミュレーション評価において、AlphaCodeは平均54.3%のランキングを達成した。
論文 参考訳(メタデータ) (2022-02-08T23:16:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。