論文の概要: Theoretical guarantees for neural control variates in MCMC
- arxiv url: http://arxiv.org/abs/2304.01111v2
- Date: Mon, 28 Oct 2024 09:39:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-29 12:15:06.885635
- Title: Theoretical guarantees for neural control variates in MCMC
- Title(参考訳): MCMCにおける神経制御の変動に関する理論的保証
- Authors: Denis Belomestny, Artur Goldman, Alexey Naumov, Sergey Samsonov,
- Abstract要約: 我々は、基礎となるマルコフ連鎖上の様々なエルゴディディティ仮定の下での分散の最適収束率を導出する。
提案手法は分散還元アルゴリズムと関数近似理論の誤差に関する最近の結果に依存する。
- 参考スコア(独自算出の注目度): 5.582861438320171
- License:
- Abstract: In this paper, we propose a variance reduction approach for Markov chains based on additive control variates and the minimization of an appropriate estimate for the asymptotic variance. We focus on the particular case when control variates are represented as deep neural networks. We derive the optimal convergence rate of the asymptotic variance under various ergodicity assumptions on the underlying Markov chain. The proposed approach relies upon recent results on the stochastic errors of variance reduction algorithms and function approximation theory.
- Abstract(参考訳): 本稿では,加法制御変数に基づくマルコフ連鎖の分散低減手法と,漸近的分散に対する適切な推定値の最小化を提案する。
制御変数がディープニューラルネットワークとして表現される場合、特に注目する。
マルコフ連鎖上の様々なエルゴード性仮定の下での漸近分散の最適収束率を導出する。
提案手法は分散還元アルゴリズムと関数近似理論の確率的誤差に関する最近の結果に依拠する。
関連論文リスト
- Variance-Reducing Couplings for Random Features [57.73648780299374]
ランダム機能(RF)は、機械学習においてカーネルメソッドをスケールアップする一般的なテクニックである。
ユークリッド空間と離散入力空間の両方で定義されるRFを改善するための結合を求める。
パラダイムとしての分散還元の利点と限界について、驚くほどの結論に達した。
論文 参考訳(メタデータ) (2024-05-26T12:25:09Z) - A Unified Theory of Stochastic Proximal Point Methods without Smoothness [52.30944052987393]
近点法はその数値的安定性と不完全なチューニングに対する頑健性からかなりの関心を集めている。
本稿では,近位点法(SPPM)の幅広いバリエーションの包括的解析について述べる。
論文 参考訳(メタデータ) (2024-05-24T21:09:19Z) - A primal-dual perspective for distributed TD-learning [7.871657629581001]
本研究の目的は,ネットワーク型マルチエージェントマルコフ決定プロセスにおける分散時間差(TD)学習について検討することである。
提案手法は分散最適化アルゴリズムに基づいており、これはヌル空間制約を受ける原始双対常微分方程式(ODE)の力学として解釈できる。
論文 参考訳(メタデータ) (2023-10-01T10:38:46Z) - Variational Classification [51.2541371924591]
我々は,変分オートエンコーダの訓練に用いるエビデンスローバウンド(ELBO)に類似した,モデルの訓練を目的とした変分目的を導出する。
軟質マックス層への入力を潜伏変数のサンプルとして扱うことで, 抽象化された視点から, 潜在的な矛盾が明らかとなった。
我々は、標準ソフトマックス層に見られる暗黙の仮定の代わりに、選択された潜在分布を誘導する。
論文 参考訳(メタデータ) (2023-05-17T17:47:19Z) - Optimal variance-reduced stochastic approximation in Banach spaces [114.8734960258221]
可分バナッハ空間上で定義された収縮作用素の定点を推定する問題について検討する。
演算子欠陥と推定誤差の両方に対して漸近的でない境界を確立する。
論文 参考訳(メタデータ) (2022-01-21T02:46:57Z) - Galerkin Neural Networks: A Framework for Approximating Variational
Equations with Error Control [0.0]
本稿では,ニューラルネットワークを用いて変分方程式の解を近似する手法を提案する。
基本関数がニューラルネットワークの列の実現である有限次元部分空間の列を用いる。
論文 参考訳(メタデータ) (2021-05-28T20:25:40Z) - Sampling-free Variational Inference for Neural Networks with
Multiplicative Activation Noise [51.080620762639434]
サンプリングフリー変動推論のための後方近似のより効率的なパラメータ化を提案する。
提案手法は,標準回帰問題に対する競合的な結果をもたらし,大規模画像分類タスクに適している。
論文 参考訳(メタデータ) (2021-03-15T16:16:18Z) - Stochastic Variance Reduction for Variational Inequality Methods [19.061953585686986]
凸凹サドル点問題, 単調変位不等式, 単調包含問題に対する分散化アルゴリズムを提案する。
私たちのフレームワークは、ユークリッドとブレグマンの両方で、エクストラグラデーション、フォワードバックワード、フォワードリフレクテッドバックワードメソッドに適用されます。
論文 参考訳(メタデータ) (2021-02-16T18:39:16Z) - Scalable Control Variates for Monte Carlo Methods via Stochastic
Optimization [62.47170258504037]
本稿では,制御,カーネル,ニューラルネットワークを用いた既存のアプローチを包含し,一般化するフレームワークを提案する。
新たな理論的結果は、達成可能な分散還元に関する洞察を与えるために提示され、ベイズ推定への応用を含む経験的評価が支持される。
論文 参考訳(メタデータ) (2020-06-12T22:03:25Z) - The k-tied Normal Distribution: A Compact Parameterization of Gaussian
Mean Field Posteriors in Bayesian Neural Networks [46.677567663908185]
変分ベイズ推論は、ベイズニューラルネットワークの重み付けを近似する一般的な手法である。
最近の研究は、性能向上を期待して、近似後部のよりリッチなパラメータ化を探求している。
これらの変動パラメータを低ランク因子化に分解することにより、モデルの性能を低下させることなく変動近似をよりコンパクトにすることができる。
論文 参考訳(メタデータ) (2020-02-07T07:33:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。