論文の概要: Making AI Less "Thirsty": Uncovering and Addressing the Secret Water
Footprint of AI Models
- arxiv url: http://arxiv.org/abs/2304.03271v3
- Date: Sun, 29 Oct 2023 17:30:08 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-31 22:50:43.281421
- Title: Making AI Less "Thirsty": Uncovering and Addressing the Secret Water
Footprint of AI Models
- Title(参考訳): AIを"Thirsty"以下にする - AIモデルの秘密のフットプリントの発見と対処
- Authors: Pengfei Li and Jianyi Yang and Mohammad A. Islam and Shaolei Ren
- Abstract要約: マイクロソフトの最先端の米国データセンターでGPT-3を訓練することで、70万リットルの清浄な淡水を直接蒸発させることができる。
世界のAI需要は、2027年の4.2.6億立方メートルの水流出の原因となる可能性がある。
グローバルな水の課題に対応するために、AIモデルは、社会的責任を負い、例によってリードする必要がある。
- 参考スコア(独自算出の注目度): 34.93600962447119
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The growing carbon footprint of artificial intelligence (AI) models,
especially large ones such as GPT-3, has been undergoing public scrutiny.
Unfortunately, however, the equally important and enormous water (withdrawal
and consumption) footprint of AI models has remained under the radar. For
example, training GPT-3 in Microsoft's state-of-the-art U.S. data centers can
directly evaporate 700,000 liters of clean freshwater, but such information has
been kept a secret. More critically, the global AI demand may be accountable
for 4.2 -- 6.6 billion cubic meters of water withdrawal in 2027, which is more
than the total annual water withdrawal of 4 -- 6 Denmark or half of the United
Kingdom. This is very concerning, as freshwater scarcity has become one of the
most pressing challenges shared by all of us in the wake of the rapidly growing
population, depleting water resources, and aging water infrastructures. To
respond to the global water challenges, AI models can, and also must, take
social responsibility and lead by example by addressing their own water
footprint. In this paper, we provide a principled methodology to estimate the
water footprint of AI models, and also discuss the unique spatial-temporal
diversities of AI models' runtime water efficiency. Finally, we highlight the
necessity of holistically addressing water footprint along with carbon
footprint to enable truly sustainable AI.
- Abstract(参考訳): 人工知能(AI)モデルの炭素フットプリントの増加、特にGPT-3のような大きなフットプリントは、公衆の監視を受けている。
しかし残念ながら、AIモデルの等しく重要で巨大な水(水と消費)のフットプリントは、まだレーダーの下に残っている。
例えば、Microsoftの最先端の米国データセンターでGPT-3をトレーニングすることで、70,000リットルの淡水を直接蒸発させることができるが、そのような情報は秘密にされている。
さらに重要なのは、世界のai需要が2027年の4.2~660億立方メートル(約6兆6600億立方メートル)に達する可能性があることだ。
人口が急増し、水資源が枯渇し、水のインフラが老朽化している中で、淡水不足は私たち全員が共有する最も急進的な課題の1つになっている。
世界的な水難に答えるためには、aiモデルは社会的責任を負い、自分の水量に対処し、例を挙げてリードする必要がある。
本稿では,AIモデルの水分フットプリントを推定する原理的手法を提案するとともに,AIモデルの実行時の水効率の空間的・時間的差異について考察する。
最後に,真に持続的なaiを実現するために,水フットプリントとカーボンフットプリントの連携の必要性を強調する。
関連論文リスト
- AIWR: Aerial Image Water Resource Dataset for Segmentation Analysis [0.0]
このデータセットには、タイ北東部の自然と人工の水域に焦点を当てた800の空中画像が含まれている。
リモートセンシングの専門家が検証した根拠となる真実のアノテーションが含まれている。
提案するデータセットの目的は,水体セグメンテーションのための高度なAI駆動手法を検討することである。
論文 参考訳(メタデータ) (2024-11-04T04:45:45Z) - Towards an Autonomous Surface Vehicle Prototype for Artificial Intelligence Applications of Water Quality Monitoring [68.41400824104953]
本稿では,人工知能アルゴリズムの利用と水質モニタリングのための高感度センシング技術に対処する車両プロトタイプを提案する。
車両には水質パラメータと水深を測定するための高品質なセンサーが装備されている。
ステレオカメラにより、実際の環境でのマクロプラスチックの検出と検出も可能である。
論文 参考訳(メタデータ) (2024-10-08T10:35:32Z) - Hype, Sustainability, and the Price of the Bigger-is-Better Paradigm in AI [67.58673784790375]
AIパラダイムは、科学的に脆弱なだけでなく、望ましくない結果をもたらすものだ、と私たちは主張する。
第一に、計算要求がモデルの性能よりも早く増加し、不合理な経済要求と不均等な環境フットプリントにつながるため、持続可能ではない。
第二に、健康、教育、気候などの重要な応用は別として、他人を犠牲にして特定の問題に焦点をあてることである。
論文 参考訳(メタデータ) (2024-09-21T14:43:54Z) - A Toolbox for Supporting Research on AI in Water Distribution Networks [6.965539315733295]
複雑なシナリオモデリングと生成のためのPythonツールボックスを紹介します。
一般的なイベント検出ベンチマークへのアクセスが容易で、制御アルゴリズムを開発するための環境を提供する。
論文 参考訳(メタデータ) (2024-06-04T07:58:19Z) - A Dataset for Research on Water Sustainability [18.979261592551676]
本研究は, 冷却システムにおける直接水利用と, 発電に埋め込まれた間接水利用のためのデータセットを構築した。
当社のデータセットは、2019年から2023年までの米国の主要都市と州の時給水効率で構成されています。
本稿では,データセットの予備解析を行い,その利点を享受できる3つの潜在的なアプリケーションについて論じる。
論文 参考訳(メタデータ) (2024-05-24T02:59:52Z) - DeepEn2023: Energy Datasets for Edge Artificial Intelligence [3.0996501197166975]
我々は、エッジAIのための大規模エネルギーデータセットDeepEn2023を提案し、幅広いカーネル、最先端のディープニューラルネットワークモデル、一般的なエッジAIアプリケーションをカバーする。
DeepEn2023は、デバイス上でのディープラーニングにおける持続可能性の透明性を、さまざまなエッジAIシステムやアプリケーションにわたって改善することを期待しています。
論文 参考訳(メタデータ) (2023-11-30T16:54:36Z) - On the Opportunities of Green Computing: A Survey [80.21955522431168]
人工知能(AI)は数十年にわたり、技術と研究において大きな進歩を遂げてきた。
高いコンピューティングパワーの必要性は、より高い二酸化炭素排出量をもたらし、研究の公正性を損なう。
コンピューティングリソースの課題とAIの環境への影響に取り組むため、グリーンコンピューティングはホットな研究トピックとなっている。
論文 参考訳(メタデータ) (2023-11-01T11:16:41Z) - The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
機械学習とAIの最近の進歩は、技術革新、製品開発、社会全体を破壊している。
AIは、科学的な実践とモデル発見のための高品質なデータの大規模なデータセットへのアクセスがより困難であるため、基礎科学にはあまり貢献していない。
ここでは、科学的な発見に対するAI駆動、自動化、クローズドループアプローチの側面を調査し、調査する。
論文 参考訳(メタデータ) (2023-07-09T21:16:56Z) - Eco2AI: carbon emissions tracking of machine learning models as the
first step towards sustainable AI [47.130004596434816]
eco2AIでは、エネルギー消費の追跡と地域CO2排出量の正当性に重点を置いている。
モチベーションは、サステナブルAIとグリーンAI経路の両方で、AIベースの温室効果ガスの隔離サイクルの概念からもたらされる。
論文 参考訳(メタデータ) (2022-07-31T09:34:53Z) - Water Level Estimation Using Sentinel-1 Synthetic Aperture Radar Imagery
And Digital Elevation Models [0.0]
Sentinel-1 Synthetic Aperture Radar ImageryとDigital Elevation Modelデータセットを用いた新しい水位抽出手法を提案する。
実験の結果、このアルゴリズムは世界中の3つの貯水池で0.93mの低い平均誤差を達成した。
論文 参考訳(メタデータ) (2020-12-11T18:42:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。