論文の概要: A Toolbox for Supporting Research on AI in Water Distribution Networks
- arxiv url: http://arxiv.org/abs/2406.02078v1
- Date: Tue, 4 Jun 2024 07:58:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-05 17:21:12.758392
- Title: A Toolbox for Supporting Research on AI in Water Distribution Networks
- Title(参考訳): 配水ネットワークにおけるAI研究を支援するツールボックス
- Authors: André Artelt, Marios S. Kyriakou, Stelios G. Vrachimis, Demetrios G. Eliades, Barbara Hammer, Marios M. Polycarpou,
- Abstract要約: 複雑なシナリオモデリングと生成のためのPythonツールボックスを紹介します。
一般的なイベント検出ベンチマークへのアクセスが容易で、制御アルゴリズムを開発するための環境を提供する。
- 参考スコア(独自算出の注目度): 6.965539315733295
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Drinking water is a vital resource for humanity, and thus, Water Distribution Networks (WDNs) are considered critical infrastructures in modern societies. The operation of WDNs is subject to diverse challenges such as water leakages and contamination, cyber/physical attacks, high energy consumption during pump operation, etc. With model-based methods reaching their limits due to various uncertainty sources, AI methods offer promising solutions to those challenges. In this work, we introduce a Python toolbox for complex scenario modeling \& generation such that AI researchers can easily access challenging problems from the drinking water domain. Besides providing a high-level interface for the easy generation of hydraulic and water quality scenario data, it also provides easy access to popular event detection benchmarks and an environment for developing control algorithms.
- Abstract(参考訳): 飲料水は人類にとって重要な資源であり、現代の社会では水分配ネットワーク(WDN)が重要な基盤となっている。
WDNの運用は、水漏れや汚染、サイバー/物理攻撃、ポンプ運転時の高エネルギー消費など、さまざまな課題に直面している。
さまざまな不確実性ソースのためにモデルベースの手法が限界に達すると、AI手法はこれらの課題に対する有望な解決策を提供する。
本研究では,複雑なシナリオモデリングと生成のためのPythonツールボックスを導入し,AI研究者が飲料水領域から難しい問題に容易にアクセスできるようにする。
油圧および水質のシナリオデータを簡単に生成するための高レベルのインターフェースを提供するだけでなく、一般的なイベント検出ベンチマークへのアクセスや、制御アルゴリズムを開発するための環境も提供する。
関連論文リスト
- Challenges, Methods, Data -- a Survey of Machine Learning in Water Distribution Networks [5.185604886838128]
この研究は、配水ネットワークにおける主要なタスクを示し、機械学習との関係について論じる。
ドメインの特殊性がどのように課題を提起し、機械学習のアプローチによって活用されるかを分析する。
論文 参考訳(メタデータ) (2024-10-16T11:21:07Z) - Towards an Autonomous Surface Vehicle Prototype for Artificial Intelligence Applications of Water Quality Monitoring [68.41400824104953]
本稿では,人工知能アルゴリズムの利用と水質モニタリングのための高感度センシング技術に対処する車両プロトタイプを提案する。
車両には水質パラメータと水深を測定するための高品質なセンサーが装備されている。
ステレオカメラにより、実際の環境でのマクロプラスチックの検出と検出も可能である。
論文 参考訳(メタデータ) (2024-10-08T10:35:32Z) - Underwater Object Detection in the Era of Artificial Intelligence: Current, Challenge, and Future [119.88454942558485]
水中物体検出(UOD)は、水中の画像やビデオ中の物体を識別し、ローカライズすることを目的としている。
近年、人工知能(AI)に基づく手法、特に深層学習法は、UODにおいて有望な性能を示している。
論文 参考訳(メタデータ) (2024-10-08T00:25:33Z) - SEN12-WATER: A New Dataset for Hydrological Applications and its Benchmarking [40.996860106131244]
気候と干ばつの増加は、世界中の水資源管理に重大な課題をもたらしている。
本稿では,干ばつ関連分析のためのエンドツーエンドディープラーニングフレームワークを用いたベンチマークとともに,新しいデータセットであるSEN12-WATERを提案する。
論文 参考訳(メタデータ) (2024-09-25T16:50:59Z) - Aquatic Navigation: A Challenging Benchmark for Deep Reinforcement Learning [53.3760591018817]
ゲームエンジンとDeep Reinforcement Learningの統合の最近の進歩を利用して,水上ナビゲーションのための新しいベンチマーク環境を提案する。
具体的には、最も広く受け入れられているアルゴリズムの一つであるPPOに着目し、先進的なトレーニング手法を提案する。
実験により,これらの成分をうまく組み合わせることで,有望な結果が得られることが示された。
論文 参考訳(メタデータ) (2024-05-30T23:20:23Z) - On the Challenges and Opportunities in Generative AI [135.2754367149689]
現在の大規模生成AIモデルは、ドメイン間で広く採用されるのを妨げるいくつかの基本的な問題に十分対応していない、と我々は主張する。
本研究は、現代の生成型AIパラダイムにおける重要な未解決課題を特定し、その能力、汎用性、信頼性をさらに向上するために取り組まなければならない。
論文 参考訳(メタデータ) (2024-02-28T15:19:33Z) - ACWA: An AI-driven Cyber-Physical Testbed for Intelligent Water Systems [0.0]
ACWAは、AIとサイバーセキュリティの実験を使用して給水管理を進める必要性によって動機付けられている。
ACWAは、複数のトポロジ、センサー、計算ノード、ポンプ、タンク、スマートウォーターデバイス、およびシステムを制御するデータベースとAIモデルで構成されている。
ACWAデータはAIとウォータードメインの研究者が利用でき、オンラインのパブリックリポジトリにホストされている。
論文 参考訳(メタデータ) (2023-09-27T00:59:52Z) - AI for IT Operations (AIOps) on Cloud Platforms: Reviews, Opportunities
and Challenges [60.56413461109281]
IT運用のための人工知能(AIOps)は、AIのパワーとIT運用プロセスが生成するビッグデータを組み合わせることを目的としている。
我々は、IT運用活動が発信する重要なデータの種類、分析における規模と課題、そしてどのように役立つかについて深く議論する。
主要なAIOpsタスクは、インシデント検出、障害予測、根本原因分析、自動アクションに分類します。
論文 参考訳(メタデータ) (2023-04-10T15:38:12Z) - Underwater Acoustic Networks for Security Risk Assessment in Public
Drinking Water Reservoirs [5.227907960942717]
我々は、水中イベントを検出し、分類し、ローカライズするための革新的なAIベースのアプローチを実装している。
貯水池におけるハイドロフォンネットワークの設置と利用の課題について論じる。
論文 参考訳(メタデータ) (2021-07-29T14:02:51Z) - Towards AIOps in Edge Computing Environments [60.27785717687999]
本稿では,異種分散環境に適用可能なaiopsプラットフォームのシステム設計について述べる。
高頻度でメトリクスを収集し、エッジデバイス上で特定の異常検出アルゴリズムを直接実行することが可能である。
論文 参考訳(メタデータ) (2021-02-12T09:33:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。