論文の概要: Diffusion Models for Constrained Domains
- arxiv url: http://arxiv.org/abs/2304.05364v2
- Date: Thu, 7 Mar 2024 13:48:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-08 18:26:17.243175
- Title: Diffusion Models for Constrained Domains
- Title(参考訳): 制約領域の拡散モデル
- Authors: Nic Fishman, Leo Klarner, Valentin De Bortoli, Emile Mathieu, Michael
Hutchinson
- Abstract要約: 我々は, (i) 対数障壁距離と (ii) 制約によって誘導されるブラウン運動に基づく2つの異なる雑音化過程を示す。
次に、ロボット工学やタンパク質設計の応用を含む、多くの合成および実世界のタスクにおいて、我々の手法の実用性を実証する。
- 参考スコア(独自算出の注目度): 11.488860260925504
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Denoising diffusion models are a novel class of generative algorithms that
achieve state-of-the-art performance across a range of domains, including image
generation and text-to-image tasks. Building on this success, diffusion models
have recently been extended to the Riemannian manifold setting, broadening
their applicability to a range of problems from the natural and engineering
sciences. However, these Riemannian diffusion models are built on the
assumption that their forward and backward processes are well-defined for all
times, preventing them from being applied to an important set of tasks that
consider manifolds defined via a set of inequality constraints. In this work,
we introduce a principled framework to bridge this gap. We present two distinct
noising processes based on (i) the logarithmic barrier metric and (ii) the
reflected Brownian motion induced by the constraints. As existing diffusion
model techniques cannot be applied in this setting, we derive new tools to
define such models in our framework. We then demonstrate the practical utility
of our methods on a number of synthetic and real-world tasks, including
applications from robotics and protein design.
- Abstract(参考訳): denoising diffusion modelは、画像生成やテキストから画像へのタスクなど、さまざまな領域で最先端のパフォーマンスを実現する、新しい生成アルゴリズムのクラスである。
この成功を基にした拡散モデルは、最近リーマン多様体の設定に拡張され、自然科学や工学の科学における様々な問題への適用性を広げている。
しかし、これらのリーマン拡散モデルは、それらの前方および後方の過程が常によく定義されているという仮定に基づいて構築され、不等式制約の集合によって定義される多様体を考える重要な一連のタスクに適用できない。
本稿では,このギャップを埋めるための原則的フレームワークを紹介する。
我々は2つの異なるノイズ発生過程を示す。
(i)対数障壁メートル法及び
(ii) 制約によって誘導される反射ブラウン運動。
既存の拡散モデル技術はこの設定では適用できないため、我々のフレームワークでそのようなモデルを定義するための新しいツールを導き出す。
次に、ロボット工学やタンパク質設計の応用を含む、多くの合成および実世界のタスクにおいて、我々の手法の実用性を実証する。
関連論文リスト
- G2D2: Gradient-guided Discrete Diffusion for image inverse problem solving [55.185588994883226]
本稿では,従来の離散拡散に基づく画像生成モデルを活用することによって,線形逆問題に対処する新しい手法を提案する。
我々の知る限りでは、これは画像逆問題を解決するために離散拡散モデルに基づく先行手法を使う最初のアプローチである。
論文 参考訳(メタデータ) (2024-10-09T06:18:25Z) - Derivative-Free Guidance in Continuous and Discrete Diffusion Models with Soft Value-Based Decoding [84.3224556294803]
拡散モデルは、画像、分子、DNA、RNA、タンパク質配列の自然なデザイン空間を捉えるのに優れている。
これらの設計空間の自然性を保ちながら、下流の報酬関数を最適化することを目指している。
提案アルゴリズムは,中間雑音状態が将来高い報酬をもたらすことの先駆けとして,ソフトバリュー関数を統合する。
論文 参考訳(メタデータ) (2024-08-15T16:47:59Z) - Diffusion Models in Low-Level Vision: A Survey [82.77962165415153]
拡散モデルに基づくソリューションは、優れた品質と多様性のサンプルを作成する能力で広く称賛されている。
本稿では,3つの一般化拡散モデリングフレームワークを提案し,それらと他の深層生成モデルとの相関関係について検討する。
医療、リモートセンシング、ビデオシナリオなど、他のタスクに適用された拡張拡散モデルについて要約する。
論文 参考訳(メタデータ) (2024-06-17T01:49:27Z) - Reflected Schr\"odinger Bridge for Constrained Generative Modeling [16.72888494254555]
反射拡散モデルは、現実の応用における大規模生成モデルのゴートメソッドとなっている。
本稿では,様々な領域内でデータを生成するために最適化されたエントロピー規則化された最適輸送手法であるReflectioned Schrodinger Bridgeアルゴリズムを紹介する。
提案アルゴリズムは,多様な領域におけるロバストな生成モデリングを実現し,そのスケーラビリティは,標準画像ベンチマークによる実世界の制約付き生成モデリングにおいて実証される。
論文 参考訳(メタデータ) (2024-01-06T14:39:58Z) - Steerable Conditional Diffusion for Out-of-Distribution Adaptation in Medical Image Reconstruction [75.91471250967703]
我々は、ステアブル条件拡散と呼ばれる新しいサンプリングフレームワークを導入する。
このフレームワークは、利用可能な測定によって提供される情報のみに基づいて、画像再構成と並行して拡散モデルを適用する。
様々な画像モダリティにまたがるアウト・オブ・ディストリビューション性能の大幅な向上を実現した。
論文 参考訳(メタデータ) (2023-08-28T08:47:06Z) - Metropolis Sampling for Constrained Diffusion Models [11.488860260925504]
近年,画像領域における生成モデルの主要なパラダイムとして拡散モデルが出現している。
我々は、ブラウン運動を反映した、別の単純ノルマント化スキームを導入する。
論文 参考訳(メタデータ) (2023-07-11T17:05:23Z) - Geometric Neural Diffusion Processes [55.891428654434634]
拡散モデルの枠組みを拡張して、無限次元モデリングに一連の幾何学的先行を組み込む。
これらの条件で、生成関数モデルが同じ対称性を持つことを示す。
論文 参考訳(メタデータ) (2023-07-11T16:51:38Z) - Infinite-Dimensional Diffusion Models [4.342241136871849]
拡散に基づく生成モデルを無限次元で定式化し、関数の生成モデルに適用する。
我々の定式化は無限次元の設定においてよく成り立っていることを示し、サンプルから目標測度への次元非依存距離境界を提供する。
また,無限次元拡散モデルの設計ガイドラインも作成する。
論文 参考訳(メタデータ) (2023-02-20T18:00:38Z) - A Survey on Generative Diffusion Model [75.93774014861978]
拡散モデルは、深層生成モデルの新たなクラスである。
時間を要する反復生成過程や高次元ユークリッド空間への閉じ込めなど、いくつかの制限がある。
本調査では,拡散モデルの向上を目的とした高度な手法を多数提示する。
論文 参考訳(メタデータ) (2022-09-06T16:56:21Z) - Let us Build Bridges: Understanding and Extending Diffusion Generative
Models [19.517597928769042]
拡散に基づく生成モデルは、最近、有望な結果を得たが、多くのオープンな疑問を提起している。
この研究は、理論的な理解を深めるために、全体的なフレームワークを再検討しようと試みている。
1)拡散生成モデルを学習するための最初の理論的誤り解析,2)異なる離散および制約された領域からのデータを学ぶための単純で統一的なアプローチを提案する。
論文 参考訳(メタデータ) (2022-08-31T08:58:10Z) - Approximate Latent Force Model Inference [1.3927943269211591]
潜在力モデルは、動的システムにおける推論のための純粋にデータ駆動ツールの解釈可能な代替手段を提供する。
ニューラルネットワークのアプローチは、モデルを数千のインスタンスにスケールし、高速で分散的な計算を可能にします。
論文 参考訳(メタデータ) (2021-09-24T09:55:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。