論文の概要: Neural Lumped Parameter Differential Equations with Application in
Friction-Stir Processing
- arxiv url: http://arxiv.org/abs/2304.09047v1
- Date: Tue, 18 Apr 2023 15:11:27 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-19 14:22:08.488049
- Title: Neural Lumped Parameter Differential Equations with Application in
Friction-Stir Processing
- Title(参考訳): ニューラルランプパラメータ微分方程式と摩擦スター処理への応用
- Authors: James Koch, WoongJo Choi, Ethan King, David Garcia, Hrishikesh Das,
Tianhao Wang, Ken Ross, Keerti Kappagantula
- Abstract要約: Lumpedパラメータ法は、空間的拡張または連続的な物理系の進化を単純化することを目的としている。
一般化微分方程式(Universal Differential Equation)の概念に基づいてデータ駆動モデルを構築する。
- 参考スコア(独自算出の注目度): 2.158307833088858
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Lumped parameter methods aim to simplify the evolution of spatially-extended
or continuous physical systems to that of a "lumped" element representative of
the physical scales of the modeled system. For systems where the definition of
a lumped element or its associated physics may be unknown, modeling tasks may
be restricted to full-fidelity simulations of the physics of a system. In this
work, we consider data-driven modeling tasks with limited point-wise
measurements of otherwise continuous systems. We build upon the notion of the
Universal Differential Equation (UDE) to construct data-driven models for
reducing dynamics to that of a lumped parameter and inferring its properties.
The flexibility of UDEs allow for composing various known physical priors
suitable for application-specific modeling tasks, including lumped parameter
methods. The motivating example for this work is the plunge and dwell stages
for friction-stir welding; specifically, (i) mapping power input into the tool
to a point-measurement of temperature and (ii) using this learned mapping for
process control.
- Abstract(参考訳): 集中定数法は、モデル化されたシステムの物理的スケールを表す「混合」要素への空間的拡張または連続的な物理系の進化を単純化することを目的としている。
集中要素や関連する物理の定義が不明な系では、モデリングタスクは系の物理学の完全忠実性シミュレーションに制限される。
本研究では,データ駆動型モデリングタスクについて検討する。
我々は,データ駆動モデルを構築するための普遍微分方程式(ude)の概念に基づいて,集合パラメータのダイナミクスを減少させ,その性質を推測する。
udesの柔軟性により、集約パラメータメソッドを含むアプリケーション固有のモデリングタスクに適した、様々な既知の物理プライオリティを構成することができる。
この研究のモチベーションの例は、摩擦・スター溶接の急落と膨潤段階である。
(i)工具に入力された電力を温度の測点にマッピングすること、
(ii) この学習されたマッピングをプロセス制御に用いる。
関連論文リスト
- Latent Space Energy-based Neural ODEs [73.01344439786524]
本稿では,連続時間シーケンスデータを表現するために設計された深部力学モデルの新しいファミリを紹介する。
マルコフ連鎖モンテカルロの最大推定値を用いてモデルを訓練する。
発振システム、ビデオ、実世界の状態シーケンス(MuJoCo)の実験は、学習可能なエネルギーベース以前のODEが既存のものより優れていることを示している。
論文 参考訳(メタデータ) (2024-09-05T18:14:22Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
本稿では,記号回帰(SR)と離散指数計算(DEC)を組み合わせて物理モデルの自動発見を行うフレームワークを提案する。
DECは、SRの物理問題への最先端の応用を越えている、場の理論の離散的な類似に対して、ビルディングブロックを提供する。
実験データから連続体物理の3つのモデルを再発見し,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-10-10T13:23:05Z) - Reduced order modeling of parametrized systems through autoencoders and
SINDy approach: continuation of periodic solutions [0.0]
本研究は,ROM構築と動的識別の低減を組み合わせたデータ駆動型非侵入型フレームワークを提案する。
提案手法は、非線形力学(SINDy)のパラメトリックスパース同定によるオートエンコーダニューラルネットワークを利用して、低次元力学モデルを構築する。
これらは、システムパラメータの関数として周期的定常応答の進化を追跡し、過渡位相の計算を避け、不安定性と分岐を検出することを目的としている。
論文 参考訳(メタデータ) (2022-11-13T01:57:18Z) - Differentiable physics-enabled closure modeling for Burgers' turbulence [0.0]
本稿では、既知の物理と機械学習を組み合わせて乱流問題に対するクロージャモデルを開発する微分可能な物理パラダイムを用いたアプローチについて論じる。
我々は、モデルの有効性をテストするために、後方損失関数上の様々な物理仮定を組み込んだ一連のモデルを訓練する。
既知物理あるいは既存の閉包アプローチを含む偏微分方程式の形で帰納バイアスを持つ制約モデルが、非常にデータ効率が高く、正確で、一般化可能なモデルを生成することを発見した。
論文 参考訳(メタデータ) (2022-09-23T14:38:01Z) - Neural Implicit Representations for Physical Parameter Inference from a Single Video [49.766574469284485]
本稿では,外見モデルのためのニューラル暗黙表現と,物理現象をモデル化するためのニューラル常微分方程式(ODE)を組み合わせることを提案する。
提案モデルでは,大規模なトレーニングデータセットを必要とする既存のアプローチとは対照的に,単一のビデオから物理的パラメータを識別することが可能になる。
ニューラル暗示表現を使用することで、高解像度ビデオの処理とフォトリアリスティック画像の合成が可能になる。
論文 参考訳(メタデータ) (2022-04-29T11:55:35Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
本稿では,その潜在表現内でのシステム入力の変動をキャプチャする構造付き潜在ODEモデルを提案する。
静的変数仕様に基づいて,本モデルではシステムへの入力毎の変動要因を学習し,潜在空間におけるシステム入力の影響を分離する。
論文 参考訳(メタデータ) (2022-02-25T20:00:56Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - AdjointNet: Constraining machine learning models with physics-based
codes [0.17205106391379021]
本稿では,物理制約付き機械学習フレームワークであるAdjointNetを提案する。
提案するAdjointNetフレームワークは,パラメータ推定(および拡張による不確実性定量化)と,アクティブラーニングを用いた実験設計に利用できることを示す。
論文 参考訳(メタデータ) (2021-09-08T22:43:44Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
利用可能なデータがノイズの多い部分測定の場合,カオスダイナミクスシステムのデータ支援予測の問題を検討する。
動的システムの状態の部分的測定を用いることで、不完全な知識ベースモデルによる予測を改善するために機械学習モデルを訓練できることを示す。
論文 参考訳(メタデータ) (2021-02-15T19:56:48Z) - A physics-informed operator regression framework for extracting
data-driven continuum models [0.0]
高忠実度分子シミュレーションデータから連続体モデルを発見するためのフレームワークを提案する。
提案手法は、モーダル空間における制御物理のニューラルネットワークパラメタライゼーションを適用する。
局所・非局所拡散過程や単相・多相流など,様々な物理分野におけるフレームワークの有効性を実証する。
論文 参考訳(メタデータ) (2020-09-25T01:13:51Z) - Automatic Differentiation and Continuous Sensitivity Analysis of Rigid
Body Dynamics [15.565726546970678]
剛体力学のための微分可能な物理シミュレータを提案する。
軌道最適化の文脈では、閉ループモデル予測制御アルゴリズムを導入する。
論文 参考訳(メタデータ) (2020-01-22T03:54:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。